Molecular phylogeny and divergence time estimates in pennatulaceans (Cnidaria: Octocorallia: Pennatulacea)

  1. Francisco J. García-Cárdenas 1
  2. Mónica Núñez-Flores 1
  3. Pablo J. López-González 1
  1. 1 Biodiversidad y Ecología Acuática. Departamento de Zoología, Facultad de Biología, Universidad de Sevilla
Revista:
Scientia Marina

ISSN: 0214-8358

Año de publicación: 2020

Volumen: 84

Número: 4

Páginas: 317-330

Tipo: Artículo

DOI: 10.3989/SCIMAR.05067.28A DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Scientia Marina

Resumen

Los pennatuláceos son un componente importante de las comunidades bentónicas marinas generalmente relacionados con fondos blandos. A pesar de su importante papel ecológico, la información sobre su origen y tiempo de divergencia es aún escasa. Los primeros intentos de establecer relaciones filogenéticas entre géneros datan de principios del siglo XX, cuando sólo estaban disponibles caracteres morfológicos. En la última década, los análisis filogenéticos basados en secuen- cias de ADN mitocondrial procedentes de un limitado número de especies han propuesto un ancestro hipotético diferente para este grupo, pero sus relaciones intergenéricas permanecen oscuras. La presente investigación está basada en una combinación de marcadores mitocondriales y nuclear (mtMutS, Cox1 y ADNr 28S), aportando nueva información molecular sobre las relaciones filogenéticas entre los géneros de pennatuláceos, incluyendo 38 nuevas secuencias pertenecientes a 13 especies. Algunas de las relaciones filogenéticas inferidas en el presente estudio cuestionan la actual clasificación de las plumas de mar basada en la morfología (a diferentes niveles taxonómicos), indicando claramente que los dos grupos principales Sessiliflorae y Subselliflorae, algunas de sus principales familias (por ejemplo Pennatulidae, Umbellulidae, Virgulariidae) y algunos géneros (por ejemplo Umbellula, Veretillum) son no-monofiléticos. Asimismo, los veretílidos, tradicionalmente considerados los pennatuláceos más primitivos, no se muestran como el taxón divergente más antiguo. Además, un análisis del tiempo de divergencia realizado en este trabajo sugirió que el origen de los pennatuláceos data del Cretácico Inferior (Berriasiano, ~ 144 Ma), de acuerdo con su escasamente conocido registro fósil, mientras que la divergencia inicial de la mayoría de los géneros existentes ocurrió en tiempos del Oligoceno y Mioceno

Referencias bibliográficas

  • Aubry M.P., Van Couvering J.A., Christie-Blick N., et al. 2009. Terminology of geological time: Establishment of a community standard. Stratigraphy 6: 100-105.
  • Baillon S., Hamel J.F., Warehem V.E., et al. 2012. Deep cold-water corals as nurseries for fish larvae. Front. Ecol. Environ. 10: 351-356.
  • Baillon S., Hamel J.F., Mercier A. 2014. Diversity, distribution and nature of faunal associations with deep-sea pennatulacean corals in the Northwest Atlantic. PloS ONE 9: e111519.
  • Bayer F.M. 1956. Octocorallia. In: Moore R.C. (eds), Treatise on invertebrate paleontology. Part F. Coelenterata. Geol. Soc. America Univ. Kansas Press. New York and Lawrence Kansas, pp. 166-231.
  • Bayer F.M. 1981. Key to the genera of Octocorallia exclusive of Pennatulacea (Coelenterata: Anthozoa), with diagnoses of new taxa. Proc. Biol. Soc. Wash. 94: 902-947.
  • Berntson E.A., France S.C., Mullineaux L.S. 1999. Phylogenetic relationships within the class Anthozoa (phylum Cnidaria) based on nuclear 18S rDNA sequences. Mol. Phylogenet. Evol. 13: 417-433.
  • Berntson E.A., Bayer F.M., McArthur A.G., et al. 2001. Phylogenetic relationships within the Octocorallia (Cnidaria: Anthozoa) based on nuclear 18S rRNA sequences. Mar. Biol. 138: 235-246.
  • Bilewitch J.P. 2014. The roles of morphological diversification, depth range expansions and a novel gene in the evolution of the Octocorallia. Unpublished Phd thesis, The University of Queensland, Australia.
  • Bilewitch J.P., Degnan S.M. 2011. A unique horizontal gene transfer event has provided the octocoral mitochondrial genome with an active mismatch repair gene that has potential for an unusual self-contained function. BMC Evol. Biol. 11: 1-14.
  • Bouckaert R., Heled J., Kühnert D., et al. 2014. BEAST 2: a software platform for Bayesian evolutionary analysis. PloS Comput. Biol. 10: e1003537.
  • Brockman S.A., McFadden C.S. 2012. The mitochondrial genome of Paraminabea aldersladei (Cnidaria: Anthozoa: Octocorallia) supports intramolecular recombination as the primary mechanism of gene rearrangement in octocoral mitochondrial genomes. Genome Biol. Evol. 4: 882-894.
  • Chia F.S., Crawford B.J. 1973. Some observations on gametogenesis, larval development and substratum selection of the sea pen Ptilosarcus guerneyi. Mar. Biol. 23: 73-82.
  • Clippele L.H., Buhl-Mortensen P., Buhl-Mortensen L. 2015. Fauna associated with cold water gorgonians and sea pens. Cont. Shelf. Res. 105: 67-78.
  • Cognetti G., Sarà M., Magazzù G. 2001. Biología marina. Ed. Ariel, Barcelona. 619 pp.
  • Curd A. 2010. Background Document for sea pen and burrowing megafauna communities., Biodiversity Series. OSPAR Commission, Ospar Convention for the Protection of the Marine Environment of the Northeast Atlantic, 26 pp.
  • Daly M., Brugler M.R., Cartwright P. 2007. The phylum Cnidaria: a review of phylogenetic patterns and diversity 300 years after Linnaeus. Zootaxa 1668: 127-182.
  • Dolan E., Tyler P.A., Yesson C., et al. 2013. Phylogeny and systematics of deep-sea sea pens (Anthozoa: Octocorallia: Pennatula cea). Mol. Phylogenet. Evol. 69: 610-618.
  • Drummond A.J., Rambaut A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7: 214.
  • Drummond A.J., Bouckaert R.R. 2015. Bayesian evolutionary analysis with BEAST. Cambridge University Press.
  • Duchêne S., Lanfear R., Ho S.Y. 2014. The impact of calibration and clock-model choice on molecular estimates of divergence times. Mol. Phylogenet. Evol. 78: 277-289.
  • Everett M.V., Park L.K., Berntson E.A., et al. 2016. Large-scale genotyping-by-sequencing indicates high levels of gene flow in the deep-sea octocoral Swiftia simplex (Nutting 1909) on the west coast of the United States. PloS ONE 11: e0165279.
  • Fabricius K., Alderslade P. 2001. Soft corals and sea fans. Australian Institute of Marine Science. Australia. 264 pp.
  • Föllmi K. B. 2012. Early Cretaceous life, climate and anoxia. Cretaceous Res. 35: 230-257.
  • France S.C., Hoover L.L. 2002. DNA sequences of the mitochondrial COI gene have low levels of divergence among deep-sea octocorals (Cnidaria: Anthozoa). Hydrobiologia 471: 149-155.
  • Friedrich O., Norris R.D., Erbacher J. 2012. Evolution of middle to Late Cretaceous oceans-a 55 my record of Earth’s temperature and carbon cycle. Geology 40: 107-110.
  • García-Cárdenas F.J., Drewery J., López-González P.J. 2019. Resurrection of the sea pen genus Ptilella Gray, 1870 and description of Ptilella grayi n. sp. from the NE Atlantic (Octocorallia, Pennatulacea). Sci. Mar. 83: 261-276.
  • Grasshoff M. 1999. The shallow water gorgonians of New Caledonia and adjacent islands (Coelenterata: Octocorallia). Senchenb. Biol. 78: 1-245.
  • Haq B.U., Hardenbol J., Vail P.R. 1987. Chronology of fluctuating sea levels since the Triassic. Science 235: 1156-1167.
  • Herklots J.A. 1858. Notices pour servir à l’étude des polypiers nageurs ou pennatulidés. Bijdragen tot de Dierkunde 7: 1-31.
  • Hickson S.J. 1916. The Pennatulacea of the Siboga Expedition, with a general survey of the order. Siboga-Expeditie Monographs 14, Livr. 77: 265 pp.
  • Hickson S.J. 1930. On the Classification of the Alcyonaria. Proc. Zool. Soc. Lond. 100: 229-252.
  • Hickson S.J. 1937. The Pennatulacea. Scientific Rep. John Murray Expedition, 1933-v1934 4: 109-130.
  • Hogan R.I., Hopkins K., Wheeler A.J., et al. 2019. Novel diversity in mitochondrial genomes of deep-sea Pennatulacea (Cnidaria: Anthozoa: Octocorallia). Mitochondr. DNA Part A. 30: 764-777.
  • Hughes D.J. 1998. Sea pens and burrowing megafauna (volume III). An overview of dynamics and sensitivity characteristics for conservation management of marine SACs. Scottish Association for Marine Science (UK Marine SACs Project). 105 pp.
  • Huelsenbeck J.P., Ronquist F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754-755.
  • Jones L.A., Hiscock K., Connor D.W. 2000. Marine habitat reviews, a summary of ecological requirements and sensitivity characteristics for the conservation and management of Marine SAC’s. Peterborough: Joint Nature Conservation Committee (UK Marine SAC’s Project Report). 178 pp.
  • Jungersen H.F.E. 1927. Anthomastus. The Danish Ingolf-Expedition. Vol. V. Bianco Luno. Copenhagen.
  • Kayal E., Roure B., Philippe H., et al. 2013. Cnidarian phylogenetic relationships as revealed by mitogenomics. BMC Evol. Biol. 13: 5.
  • Koch G. von. 1878. Notiz über die Zooide von Pennatula. Zool. Anz. 1: 103-104.
  • Kölliker R.A. 1870. Anatomisch-Systematische Beschreibung der Alcyonararien. I. Die Pennatuliden. Abh. Senckenb. Naturforsch. Ges. 7: 487-602.
  • Kölliker R.A. 1880. Report on the Pennatulida dredged by HMS Challenger during the years 1873-1876. Report of the Scientific Results of the Voyage of H. M. S. Challenger during the years 1873-76. Zoology 1(2): 1-41.
  • Kükenthal W. 1912. Der Stammbaum der Seefedem. Verhandlungen der international Zoologischen Kongress Jena 8: 563-570.
  • Kükenthal W. 1915. Pennatularia. Das Tierreich. 43: 1-132. Verlag von R. Friedländer und Sohn, Berlin.
  • Kükenthal W., Broch H. 1910. System und Stammesgeschichte der Seefedem. Zool. Anz. 36: 222-230.
  • Kükenthal W., Broch H. 1911. Pennatulacea. Wissenschaftliche Ergebnisse der deutschen Tiefsee-Expedition “Valdivia” 13: 113-576.
  • Kushida Y., Reimer J.D. 2018. Molecular phylogeny and diversity of sea pens (Cnidaria: Octocorallia: Pennatulacea) with a focus on shallow water species of the northwestern Pacific Ocean. Mol. Phylogenet. Evol. 131: 233-244.
  • Landing E., Antcliffe J.B., Brasier M.D., et al. 2015. Distinguishing Earth’s oldest known bryozoan (Pywackia, late Cambrian) from pennatulacean octocorals (Mesozoic-Recent). J. Paleontol. 89: 292-317.
  • López-González P.J., Williams G.C. 2002. A new genus and species of sea pen (Octocorallia: Pennatulacea: Stachyptilidae) from the Antarctic Peninsula. Invertebr. Syst. 16: 919-929.
  • Marshall A.M. 1883. Report on the Pennatulida dredged by H.M.S. Triton. Trans. R. Soc. Edinb. 32: 119-152.
  • Maturana R.P., Brewer B.J., Klaere S., et al. 2018. Model selection and parameter inference in phylogenetics using nested sampling. Syst. Biol. 68: 219-233.
  • McFadden C.S., van Ofwegen L.P. 2012. Stoloniferous octocorals (Anthozoa, Octocorallia) from South Africa, with descriptions of a new family of Alcyonacea, a new genus of Clavulariidae, and a new species of Cornularia (Cornulariidae). Invertebr. Syst. 26: 331-356.
  • McFadden C.S., van Ofwegen L.P. 2013. Molecular phylogenetic evidence supports a new family of octocorals and a new genus of Alcyoniidae (Octocorallia, Alcyonacea). Zookeys 346: 59-83.
  • McFadden C.S., Tullis I.D., Hutchinson M.B., et al. 2004. Variation in coding (NADH dehydrogenase subunits 2, 3, and 6) and noncoding intergenic spacer regions of the mitochondrial genome in Octocorallia (Cnidaria: Anthozoa). Mar. Biotechnol. 6: 516-526.
  • McFadden C.S., France S.C., Sánchez J.A., et al. 2006. A molecular phylogenetic analysis of the Octocorallia (Cnidaria: Anthozoa) based on mitochondrial protein-coding sequences. Mol. Phylogenet. Evol. 41: 513-527.
  • McFadden C.S., Sánchez J.A., France S.C. 2010. Molecular phylogenetic insights into the evolution of Octocorallia: a review. Integr. Comp. Biol. 50: 389-410.
  • McFadden C.S., Benayahu Y., Pante E., et. al. 2011. Limitations of mitochondrial gene barcoding in Octocorallia. Mol. Ecol. Resour. 11: 19-31.
  • McFadden C.S., Brown A.S., Brayton C., et al. 2014. Application of DNA barcoding in biodiversity studies of shallow- water octocorals: molecular proxies agree with morphological estimates of species richness in Palau. Coral Reefs 33: 275-286.
  • Mortensen P.B., Buhl-Mortensen L., Gebruk A.V., et al. 2008. Occurrence of deep-water corals on the Mid-Atlantic Ridge based on MAR-ECO data. Deep-Sea Res. Part II 55: 142-152.
  • Niedermeyer A. 1913. Über einige histologische Befunde an Veretillum cynomorium. Zool. Anz. 43: 263-270.
  • Núñez-Flores M., Gomez-Uchida D., López-González P.J. 2020. Molecular and morphological data reveal three new species of Thouarella (Anthozoa: Octocorallia: Primnoidae) from the Southern Ocean. Mar. Biodivers. 50: 30.
  • Opresko D.M. 2002. Revision of the Antipatharia (Cnidaria: Anthozoa). Part II. Schizopathidae. Zool. Opresko Meded. Leiden 76: 411-442.
  • Pante E., France S.C., Couloux A., et al. 2012. Deep-sea origin and in-situ diversification of chrysogorgiid octocorals. PloS ONE 7: e38357.
  • Park E., Hwang D.S., Lee J.S., et al. 2012. Estimation of divergence times in cnidarian evolution based on mitochondrial protein-coding genes and the fossil record. Mol. Phylogenet. Evol. 62: 329-345.
  • Pearson P.N., Ditchfield P.W., Singano J., et al. 2001. Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs. Nature 413: 481-487.
  • Pérez C.D., Ocampo F.C. 2001. Cladistic analysis of the pennatulacean genus Renilla Lamarck, 1816 (Coelenterata, Octocorallia). J. Nat. Hist. 35: 169-173.
  • Pérez C.D., de Moura Neves B., Cordeiro R.T., et al. 2016. Diversity and distribution of Octocorallia. In: Goffredo S., Dubinsky Z. (eds). The Cnidaria, Past, Present and Future. Springer, Cham, Switzerland, pp. 109-123.
  • Prokoph A., Shields G.A., Veizer J. 2008. Compilation and time-series analysis of a marine carbonate δ18O, δ13C, 87Sr/86Sr and δ34S database through Earth history. Earth-Science Reviews 87: 113-133.
  • Quattrini A.M., Georgian S.E., Byrnes L., et al. 2013. Niche divergence by deep-sea octocorals in the genus Callogorgia across the continental slope of the Gulf of Mexico. Mol. Ecol. 22: 4123-4140.
  • Rambaut A., Drummond A.J. 2010. TreeAnnotator version 1.6.1. University of Edinburgh, Edinburgh, UK. http://beast.bio.ed.ac.uk
  • Rambaut A., Drummond A.J., Xie D., et al. 2018. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67: 901-904.
  • Reich M., Kutscher M. 2011. Sea pens (Octocorallia: Pennatulacea) from the Late Cretaceous of northern Germany. J. Paleontol. 85: 1042-1051.
  • Roberts J.M., Wheeler A.J., Freiwald A. 2006. Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science 312: 543-547.
  • Roberts J.M., Wheeler A.J., Freiwald A., et al. 2010. The biology and geology of deep-sea coral habitats. Oceanography 23: 226-227.
  • Ronquist F., Huelsenbeck J.P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574.
  • Sammarco P.W., Coll J.C. 1992. Chemical adaptations in the Octocorallia: evolutionary considerations. Mar. Ecol. Prog. Ser. 88: 93-104.
  • Sánchez J.A., McFadden C.S., France S.C., et al. 2003. Molecular phylogenetic analyses of shallow-water Caribbean octocorals. Mar. Biol. 142: 975-987.
  • Takashima R., Nishi H., Huber B.T., et al. 2006. Greenhouse world and the Mesozoic ocean. Oceanography 19: 64-74.
  • Tamura K., Stecher G., Peterson D. et al. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729.
  • Taylor P.D., Berning B., Wilson M.A. 2013. Reinterpretation of the Cambrian ‘Bryozoan’ Pywackia as an Octocoral. J. Paleontol. 87: 984-990.
  • Tiffon Y. 1987. Ordre des Cérianthaires. In: Grassé P (ed) Traité deZoologie: Anatomie, Systématique, Biologie - Cnidaires/ Anthozoaires - Tome III. Masson, Paris, pp. 210-256.
  • Tixier-Durivault A. 1965. Quelques octocoralliaires australiens. Bull. Mus. Natl. Hist. Nat. 4: 705-716.
  • Williams G.C. 1990. The Pennatulacea of southern Africa (Coelenterata, Anthozoa). Ann. S. Afr. Mus. 99: 1-120.
  • Williams G.C. 1992. Biogeography of the octocorallian coelenterate fauna of southern Africa. Biol. J. Linn. Soc. 46: 351-401.
  • Williams G.C.1994. Biotic diversity, biogeography and phylogeny of pennatulacean octocorals associated with coral reefs in the Indo-Pacific. Proc. 7th Int. Coral Reef Symp. 1994: 739-745.
  • Williams G.C. 1995. Living genera of sea pens (Coelenterata: Octocorallia: Pennatulacea): illustrated key and synopses. Zool. J. Linn. Soc. 113: 93-140.
  • Williams G.C. 1997. Preliminary assessment of the phylogeny of Pennatulacea (Anthozoa: Octocorallia), with a reevaluation of Ediacaran frond-like fossils, and a synopsis of the history of evolutionary thought regarding the sea pens. Proc. 6th Int. Conf. Coel. Biol. 1997: 497-509.
  • Williams G.C. 2011. The Global Diversity of Sea Pens (Cnidaria: Octocorallia: Pennatulacea). PloS ONE 6: e22747.
  • Williams G.C. 2015. A new genus and species of pennatulacean octocoral from equatorial West Africa (Cnidaria, Anthozoa, Virgulariidae). Zookeys 546: 39-50.
  • Williams G.C. 2019. A new genus and species of enigmatic gorgonian coral from the Ryukyu Archipelago, northwestern Pacific, with a discussion of calcaxonian systematics (Cnidaria, Anthozoa, Octocorallia). Zootaxa 4701: 417-433.
  • Williams G.C., Alderslade P. 2011. Three new species of pennatulacean octocorals with the ability to attach to rocky substrata (Cnidaria: Anthozoa: Pennatulacea). Zootaxa 3001: 33-48.
  • Williams G.C., Hoeksema B.W., van Ofwegen L.P. 2012. A fifth morphological polyp in pennatulacean octocorals, with a review of polyp polymorphism in the genera Pennatula and Pteroeides (Anthozoa: Pennatulidae). Zool. Stud. 51: 1006-1017.
  • Xia X., Lemey P. 2009. Assessing substitution saturation with DAMBE. In: Lemey P., Salemi M., et al. (eds) The Phylogenetic Handbook: A Practical Approach to DNA and Protein Phylogeny. Cambridge University Press, Cambridge, pp. 615-630.
  • Xia X., Xie Z., Salemi M., et al. 2003. An index of substitution saturation and its application. Mol. Phylog. Evol. 26: 1-7.
  • Yesson C., Taylor M.L., Tittensor D.P., et al. 2012. Global habitat suitability of cold-water octocorals. J. Biogeogr. 39: 1278-1292.