Environmental applications of Sonochemistry

  1. Daniel León Periñán 1
  2. Enrique Lozano Sánchez 1
  3. Julia Morilla Ortega 1
  4. Inés Sanchez Romero 1
  5. Julia Torres Rivera 1
  1. 1 Universidad Pablo de Olavide
    info

    Universidad Pablo de Olavide

    Sevilla, España

    ROR https://ror.org/02z749649

Revista:
MoleQla: revista de Ciencias de la Universidad Pablo de Olavide

ISSN: 2173-0903

Año de publicación: 2018

Número: 30

Páginas: 65-70

Tipo: Artículo

Otras publicaciones en: MoleQla: revista de Ciencias de la Universidad Pablo de Olavide

Resumen

The creation of new environmentally-friendly processes is currently under study. In this article, we review the bases of sonochemistry, its main environmental applications and how it can be extended to the industrial field.

Referencias bibliográficas

  • D. J. Casadonte Jr., M. Flores & C. Petrier (2005): The Use of Pulsed Ultrasound Technology to improve Environmental Remediation: A Comparative Study, Environmental Technology, 26:12, 1411-1418
  • C. Okoli, K.A. Kuttiyiel, J. Cole, J. McCutchen, H. Tawfik, R.R. Adzic & D. Mahajan (2017): Solvent effect in sonochemical synthesis of metal-alloy nanoparticles for use as electrocatalysts, Ultrasonics Sonochemistry, 41: 427-434
  • Y.G. Adewuyi (2005): Sonochemistry in environmental remediation. 1. Combinative and hybrid sonophotochemical oxidation processes for the treatment of pollutants in water, Environmental Technology, 39:10, 3409-3420
  • T.J. Mason (2007): Sonochemistry and the environment - providing a "green" link between chemistry, physics and engineering, Ultrasonics Sonochemistry, 14:4, 476-483
  • R.A. Shrestha, T.D. Pham & M. Sillanpää (2009): Effect of ultrasound on removal of persistent organic pollutants (POPs) from different types of soils, J. Hazard Mater, 170(2-3): 871-875
  • G. L. Maddikeri, A. B. Pandit, and P. R. Gogate, “Intensification Approaches for Biodiesel Synthesis from Waste Cooking Oil: A Review,” Ind. Eng. Chem. Res., vol. 51, no. 45, pp. 14610–14628, Nov. 2012.
  • M. N. Hussain and I. Janajreh, “Acousto-chemical analysis in multi-transducer sonochemical reactors for biodiesel production,” Ultrason. Sonochem., vol. 40, no. May 2017, pp. 184–193, 2018.
  • S. M. Hingu, P. R. Gogate, and V. K. Rathod, “Synthesis of biodiesel from waste cooking oil using sonochemical reactors,” Ultrason. Sonochem., vol. 17, no. 5, pp. 827–832, 2010.
  • N. S. Topare, K. D. Patil, P. Naik, A. Sonawane, and P. Joshi, “Application of Ultrasound for Synthesis of Biodiesel Application of Ultrasound for Synthesis of Biodiesel,” no. JANUARY, pp. 0–8, 2015.
  • M. Caro, K. Woloshun, F. Rubio, S.A. Maloy, P. Hosemann, Heavy liquid metal corrosion of structural materials in advanced nuclear systems, JOM 65 (2013) 1057–1066, http://dx.doi.org/10.1007/s11837-013-0663-7.
  • A. Marino, J. Lim, S. Keijers, J. van den Bosch, J. Deconinck, F. Rubio, et al., Temperature dependence of dissolution rate of a lead oxide mass exchanger in lead-bismuth eutectic, J. Nucl. mater. 450 (2014) 270–277, http://dx.doi.org/10.1016/j.jnucmat.2013.12.023.
  • J. Zhang, N. Li, Y. Chen, Oxygen control technique in molten lead and lead- bismuth eutectic systems, Nucl. Sci. Eng. 154 (2006) 223–232.
  • F. Rubio, E. D. Blandford, and L. J. Bond, “Survey of advanced nuclear technologies for potential applications of sonoprocessing,” Ultrasonics, vol. 71, pp. 211–222, 2016.
  • M. Benedict, T.H. Pigford, H.W. Levi, Nuclear Chemical Engineering, McGraw- Hill, 1981.
  • T. Toraishi, T. Kimura, M. Arisaka, Toward innovative actinide separation processes: sequential reduction scheme of uranium, neptunium, and plutonium in 3M HNO3 by external ultrasound irradiation, J. Nucl. Sci. Technol. 44 (2007) 1220–1226
  • S. I. Nikitenko, L. Venault, R. Pflieger, T. Chave, I. Bisel, and P. Moisy, “Ultrasonics Sonochemistry Potential applications of sonochemistry in spent nuclear fuel reprocessing : A short review,” Ultrason. - Sonochemistry, vol. 17, no. 6, pp. 1033– 1040, 2010.
  • F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review, J.Environ. Manage. 92 (2011) 407–418.
  • T.A. Kurniawan, G.Y. Chan, W.-H. Lo, S. Babel, Physico–chemical treatmenttechniques for wastewater laden with heavy metals, Chem. Eng. J. 118 (2006)83–98. H.
  • K. Jüttner, U. Galla, H. Schmieder, Electrochemical approaches toenvironmental problems in the process industry, Electrochim. Acta 45 (2000)2575–2594.
  • Dong, B. et al. Sono-electrochemical recovery of metal ions from their aqueous solutions. J. Hazard. Mater. 318, 379–387 (2016).
  • A. Mahvi, “Application of Ultrasonic Technology for Water and Wastewater Treatment,” Iran. J Publ Heal., vol. 38, no. 2, pp. 1– 17, 2009.
  • S. Drakopoulou, S. Terzakis, M. S. Fountoulakis, D. Mantzavinos, and T. Manios, “Ultrasound-induced inactivation of gramnegative and gram-positive bacteria in secondary treated municipal wastewater,” Ultrason. Sonochem., vol. 16, no. 5, pp. 629–634, 2009.
  • E. Joyce, S. S. Phull, J. P. Lorimer, and T. J. Mason, “The development and evaluation of ultrasound for the treatment of bacterial suspensions. A study of frequency, power and sonication time on cultured Bacillus species,” Ultrason. Sonochem., vol. 10, no. 6, pp. 315–318, 2003.