Statistical physics and dynamical systems perspectives on geophysical extreme events
-
Davide Faranda
101617
-
Gabriele Messori
5
-
Tommaso Alberti
1
-
M Carmen Alvarez-Castro
9
-
Théophile Caby
15
-
Leone Cavicchia
12
-
Erika Coppola
13
-
Reik Donner
14
-
Berengere Dubrulle
18
-
Vera Melinda Galfi
4
-
Emma Holmberg
7
-
Valerio Lembo
2
-
Robin Noyelle
6
-
Pascal Yiou
10
-
Bernardo Spagnolo
3
-
Davide Valenti
3
-
Sandro Vaienti
8
-
Caroline Wormell
11
- 1 Istituto Nazionale di Geofisica e Vulcanologia - Sezione di Roma
- 2 CNR Institute of Atmospheric Sciences and Climate
- 3 Università degli studi di Palermo - University of Palermo
- 4 Vrije Universiteit Amsterdam [Amsterdam]
- 5 Uppsala Universitet [Uppsala]
- 6 Extrèmes : Statistiques, Impacts et Régionalisation
-
7
Uppsala University
info
- 8 Centre de Physique Théorique - UMR 7332
-
9
Universidad Pablo de Olavide
info
- 10 Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette]
-
11
Australian National University
info
- 12 Centro Euro-Mediterraneo per i Cambiamenti Climatici [Bologna]
- 13 Abdus Salam International Centre for Theoretical Physics [Trieste]
-
14
Potsdam Institute for Climate Impact Research
info
- 15 Centro de Matemática - Universidade do Porto
- 16 Laboratoire de Météorologie Dynamique (UMR 8539)
-
17
London Mathematical Laboratory
info
- 18 Service de physique de l'état condensé
ISSN: 2470-0053, 2470-0045
Year of publication: 2024
Volume: 110
Issue: 4
Pages: 1001
Type: Article
More publications in: Physical Review E : Statistical, Nonlinear, and Soft Matter Physics
Abstract
Statistical physics and dynamical systems theory are key tools to study high-impact geophysical events such as temperature extremes, cyclones, thunderstorms, geomagnetic storms, and many others. Despite the intrinsic differences between these events, they all originate as temporary deviations from the typical trajectories of a geophysical system, resulting in well-organized, coherent structures at characteristic spatial and temporal scales. While statistical extreme value analysis techniques are capable of providing return times and probabilities of occurrence of certain geophysical events, they are not apt to account for their underlying physics. Their focus is to compute the probability of occurrence of events that are large or small with respect to some specific observable (e.g., temperature, precipitation, solar wind), rather than to relate rare or extreme phenomena to the underlying anomalous geophysical regimes. This paper outlines this knowledge gap, presenting some related challenges, new formalisms and briefly commenting on how stochastic approaches tailored to the study of extreme geophysical events can help to advance their understanding.