The maximum flywheel load for assessing flywheel performancevalidation and reproducibility in the squat exercise
- Alejandro Muñoz-López 1
- Diego Marmol 1
- Alberto Sanchez-Sixto 2
- Marco Pozzo 3
- Pablo Floría 4
-
1
Universidad de Sevilla
info
- 2 CEU Cardenal Spinola
- 3 SmartCoach Europe AB
-
4
Universidad Pablo de Olavide
info
ISSN: 1579-1726, 1988-2041
Year of publication: 2025
Issue: 62
Pages: 910-917
Type: Article
More publications in: Retos: nuevas tendencias en educación física, deporte y recreación
Abstract
This workstudiedthe conceptof the maximum flywheel load (MFL) as a measure of maximum dynamic performance in the flywheel half-squat exercise. Twenty physically active participants were recruited for the study. The MFL load was calculated using anexponential mean concentric angular acceleration-moment of inertia relationship, at the point where its’ first derivative was lower to 1 unit. Construct validity was analysed by studying the association between MFL and sprint (peak velocity) and jump (countermovement jump, drop jump, and repeated jump in 30” heights, vertical stiffness, and reactive strength index) performance. The reliability of the test-retest was analysed after four and eight sessions. MFL showed moderate to very large significant associations with sprintvelocity, jump height, drop jump stiffness, and reactive strength index. Test-retest analysis revealed excellent relative (intraclass correlation coefficient = 0.91) and good absolute reliability (coefficient of variation, after four (4.2%), and after eight (3.9%) familiarization sessions).
Bibliographic References
- Atkinson, G., & Nevill, A. M. (1998). Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports medicine (Auckland, N.Z.), 26(4), 217–238.
- Beato, M., Fleming, A., Coates, A., & Dello Iacono, A. (2021). Validity and reliability of a flywheel squat test in sport. Journal of Sports Sciences, 39(5), 482–488. https://doi.org/10.1080/02640414.2020.1827530
- Beato, M., Maroto-Izquierdo, S., Hernández-Davó, J. L., & Raya-González, J. (2021). Flywheel Training Periodization in Team Sports. Frontiers in Physiology, 12(November), 1–6. https://doi.org/10.3389/fphys.2021.732802
- Berg, H. E., & Tesch, P. A. (1994). A gravity-independent ergometer to be used for resistance training in space. Aviation Space and Environmental Medicine, 65(8), 752–756.
- Berg, H. E., & Tesch, P. A. (1998). Force and power characteristics of a resistive exercise device for use in space. Acta Astronautica, 42(1), 219–230. https://doi.org/10.1016/S0094-5765(98)00119-2
- Caderby, T., & Dalleau, G. (2018). A simple method for measuring lower limb stiffness in hopping. In Biomechanics of Training and Testing: Innovative Concepts and Simple Field Methods. https://doi.org/10.1007/978-3-319-05633-3_6
- Carroll, K. M., Wagle, J. P., Sato, K., Taber, C. B., Yoshida, N., Bingham, G. E., & Stone, M. H. (2019). Characterising overload in inertial flywheel devices for use in exercise training. Sports Biomechanics, 18(4), 390–401. https://doi.org/10.1080/14763141.2018.1433715
- Çetin, O., Akyildiz, Z., Demirtaş, B., Sungur, Y., Clemente, F. M., Cazan, F., & Ardigò, L. P. (2022). Reliability and validity of the multi-point method and the 2-point method’s variations of estimating the one-repetition maximum for deadlift and back squat exercises. PeerJ, 10. https://doi.org/10.7717/peerj.13013
- Cormack, S. J., Newton, R. U., McGulgan, M. R., & Doyle, T. L. A. (2008). Reliability of measures obtained during single and repeated countermovement jumps. International journal of sports physiology and performance, 3(2), 131–144. https://doi.org/10.1123/IJSPP.3.2.131
- de Hoyo, M., Sañudo, B., Carrasco, L., Domínguez-Cobo, S., Mateo-Cortes, J., Cadenas-Sánchez, M. M., & Nimphius, S. (2015). Effects of traditional versus horizontal inertial flywheel power training on common sport-related tasks. Journal of human kinetics, 47(1), 155-167. https://doi.org/10.1515/hukin-2015-0071.
- de Keijzer, K. L., Gonzalez, J. R., & Beato, M. (2022). The effect of flywheel training on strength and physical capacities in sporting and healthy populations: An umbrella review. In PLoS ONE (Bd. 17, Nummer 2 February). Public Library of Science. https://doi.org/10.1371/journal.pone.0264375
- Grgic, J., Lazinica, B., Schoenfeld, B. J., & Pedisic, Z. (2020). Test–Retest Reliability of the One-Repetition Maximum (1RM) Strength Assessment: a Systematic Review. In Sports Medicine - Open (Bd. 6, Nummer 1). Springer. https://doi.org/10.1186/s40798-020-00260-z
- Hopkins, W. G. (2015). Spreadsheets for Analysis of Validity and Reliability. Sportscience, 39, 16–42.
- Kasper, K. (2019). Sports Training Principles. Current Sports Medicine Reports, 18(4), 95–96. https://doi.org/10.1249/JSR.0000000000000576
- Kawamori N, H. G. (2004). The optimal training load for the development of muscular power. J Strength Cond Res, 18(3), 675-84. https://doi.org/10.1519/1533-4287(2004)18<675:TOTLFT>2.0.CO;2.
- Kraemer, W. J., & Ratamess, N. A. (2004). Fundamentals of Resistance Training: Progression and Exercise Prescription. Medicine and Science in Sports and Exercise, 36(4), 674–688. https://doi.org/10.1249/01.MSS.0000121945.36635.61
- Kraemer, W. J., Ratamess, N. A., Flanagan, S. D., Shurley, J. P., Todd, J. S., & Todd, T. C. (2017). Understanding the Science of Resistance Training: An Evolutionary Perspective. Sports Medicine, 47(12), 2415–2435. https://doi.org/10.1007/s40279-017-0779-y
- Loturco, I., Suchomel, T., Bishop, C., Kobal, R., Pereira, L. A., & McGuigan, M. (2019). One-repetition-maximum measures or maximum bar-power output: Which is more related to sport performance? International Journal of Sports Physiology and Performance, 14(1), 33–37. https://doi.org/10.1123/ijspp.2018-0255
- Maloney, S. J., Richards, J., Jelly, L., & Fletcher, I. M. (2019). Unilateral stiffness interventions augment vertical stiffness and change of direction speed. Journal of Strength and Conditioning Research, 33(2), 372–379. https://doi.org/10.1519/JSC.0000000000002006
- Maroto-Izquierdo, S., Bautista, I., & Rivera, F. (2020). Post-activation performance enhancement (PAPE) after a single-bout of high-intensity flywheel resistance training. Biology of Sport, 343–350. https://doi.org/10.5114/biolsport.2020.96318
- Martinez-Aranda, L. M. M., & Fernandez-Gonzalo, R. (2017). Effects of inertial setting on power, force, work, and eccentric overload during flywheel resistance exercise in women and men. Journal of Strength and Conditioning Research, 31(6), 1653–1661. https://doi.org/10.1519/JSC.0000000000001635
- McErlain-Naylor, S. A., & Beato, M. (2021). Concentric and eccentric inertia–velocity and inertia–power relationships in the flywheel squat. Journal of Sports Sciences, 39(10), 1136–1143. https://doi.org/10.1080/02640414.2020.1860472.
- Maloney, S. J., Richards, J., Jelly, L., & Fletcher, I. M. (2019). Unilateral stiffness interventions augment vertical stiffness and change of direction speed. Journal of Strength and Conditioning Research, 33(2), 372-379. https://doi.org/10.1519/JSC.0000000000002006.
- Muñoz-López, A., Floria, P., Sañudo, B., Pecci, J., Carmona, J., & Pozzo, M. (2021). The Maximum Flywheel Load : A Novel Index to Monitor Loading Intensity of Flywheel Devices. Sensors, 23, 8124–16. https://doi.org/10.3390/s21238124
- Muñoz-López, A., Fonseca, F., Ramirez-Campillo, R., Gantois, P., Nuñez, F. J., & Nakamura, F. Y. (2021). The use of real-time monitoring during flywheel resistance training programs: how can we measure the eccentric overload? A systematic review and meta-analysis. Biology of Sport, 639–652.
- Muñoz-López, A., Galiano, C., Nuñez, F. J., & Floría, P. (2022). The flywheel device shaft shape determines force and velocity profiles in the half squat exercise. Journal of Human Kinetics, 81(January), 15–25. https://doi.org/10.2478/hukin-2022-0002
- Muñoz-López, A., Pozzo, M., & Floria, P. (2021). Real-time mechanical responses to overload and fatigue using a flywheel training device. Journal of Biomechanics, 121, 110429. https://doi.org/10.1016/j.jbiomech.2021.110429
- Nuñez, F. J., De Hoyo, M., López, A. M., Sañudo, B., Otero-Esquina, C., Sanchez, H., & Gonzalo-Skok, O. (2019). Eccentric-concentric ratio: a key factor for defining strength training in soccer. International Journal of Sports Medicine, 40(12), 796-802. https://doi.org/10.1055/a-0977-5478.
- Pecci Barea, F. J., Muñoz López, A., Jones, P. A., & Sañudo Corrales, F. D. B. (2023). Effects of 6 weeks in-season flywheel squat resistance training on strength, vertical jump, change of direction and sprint performance in professional female soccer players. Biology of Sport, 40 (2), 521-529. https://doi.org/10.5114/biolsport.2023.118022.
- Peng, H. T., Kernozek, T. W., & Song, C. Y. (2011). Quadricep and hamstring activation during drop jumps with changes in drop height. Physical Therapy in Sport, 12(3), 127-132. https://doi.org/10.1016/j.ptsp.2010.10.001
- Raya-González, J., Prat-Luri, A., López-Valenciano, A., Sabido, R., & Hernández-Davó, J. L. (2021). Effects of Flywheel Resistance Training on Sport Actions. A Systematic Review and Meta-Analysis. Journal of Human Kinetics, 77(1), 191–204. https://doi.org/10.2478/hukin-2021-0020
- Sabido, R., Hernández-Davó, J. L., & Pereyra-Gerber, G. T. (2018). Influence of different inertial loads on basic training variables during the flywheel squat exercise. International Journal of Sports Physiology and Performance, 13(4), 482–489. https://doi.org/10.1123/ijspp.2017-0282
- Sagelv, E. H., Pedersen, S., Nilsen, L. P. R., Casolo, A., Welde, B., Randers, M. B., & Pettersen, S. A. (2020). Flywheel squats versus free weight high load squats for improving high velocity movements in football. A randomized controlled trial. BMC Sports Science, Medicine and Rehabilitation, 12, 1-13. https://doi.org/10.1186/s13102-020-00210.
- Samozino, P. (2018). A simple method for measuring force, velocity and power capabilities and mechanical effectiveness during sprint running. In Biomechanics of Training and Testing: Innovative Concepts and Simple Field Methods. https://doi.org/10.1007/978-3-319-05633-3_11
- Samozino, P., Rejc, E., di Prampero, P. E., Belli, A., & Morin, J. B. (2012). Optimal force-velocity profile in ballistic movements-Altius: Citius or Fortius? Medicine and Science in Sports and Exercise, 44(2), 313–322. https://doi.org/10.1249/MSS.0b013e31822d757a
- Sánchez-Sixto, A., McMahon, J. J., & Floría, P. (2021). Verbal instructions affect reactive strength index modified and time-series waveforms in basketball players. Sports Biomechanics. https://doi.org/10.1080/14763141.2020.1836252
- Schoenfeld, B. J., Grgic, J., Every, D. W. van, & Plotkin, D. L. (2021). Loading Recommendations for Muscle Strength, Hypertrophy, and Local Endurance: A Re-Examination of the Repetition Continuum.
- Tous-Fajardo, J., Maldonado, R. A., Quintana, J. M., Pozzo, M., & Tesch, P. A. (2006). The flywheel leg-curl machine: offering eccentric overload for hamstring development. International Journal of Sports Physiology and Performance, 1(3), 293–298. https://doi.org/10.1123/ijspp.1.3.293
- van Hooren, B., & Zolotarjova, J. (2017). The Difference between Countermovement and Squat Jump Performances: A Review of Underlying Mechanisms with Practical Applications. In Journal of Strength and Conditioning Research (Bd. 31, Nummer 7, S. 2011–2020). https://doi.org/10.1519/JSC.0000000000001913
- Wisløff, U., Castagna, C., Helgerud, J., Jones, R., & Hoff, J. (2004). Strong correlation of maximal squat strength with sprint performance and vertical jump height in elite soccer players. British Journal of Sports Medicine, 38(3), 285–288. https://doi.org/10.1136/bjsm.2002.002071