Computational intelligence, educational robotics, and artificial intelligence in the educational field. A bibliometric study and thematic modelling

  1. Alejandra Mercedes Colina Vargas 1
  2. Espinoza Mina, Marcos Antonio 1
  3. López Catálan, Luis 2
  4. López Catalán, Blanca 2
  1. 1 Universidad Tecnológica Ecotec
    info

    Universidad Tecnológica Ecotec

    Guayaquil, Ecuador

    ROR https://ror.org/04pe1sa24

  2. 2 Universidad Pablo de Olavide
    info

    Universidad Pablo de Olavide

    Sevilla, España

    ROR https://ror.org/02z749649

Journal:
IJERI: International journal of Educational Research and Innovation

ISSN: 2386-4303

Year of publication: 2024

Issue: 22

Type: Article

DOI: 10.46661/IJERI.10369 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: IJERI: International journal of Educational Research and Innovation

Sustainable development goals

Abstract

Este estudio aborda la convergencia entre tecnología y educación, explorando el impacto de paradigmas como la "inteligencia computacional", la "robótica educativa" y la "inteligencia artificial" en la investigación educativa. La metodología se definió en tres etapas. En la primera etapa se eligió la base de datos Web of Science y se desarrolló una cadena de búsqueda. La segunda etapa implicó la selección de estudios mediante criterios de inclusión/exclusión y el uso de PRISMA. La tercera etapa incluyó la extracción y análisis de datos cuantitativos y cualitativos, utilizando software bibliométrico, análisis de contenido y herramientas como R Studio, Bibliometrix, VOSViewer y Python. Se revela un crecimiento anual del 56,51% entre 2019 y 2023, con 208 obras. "Sustainability" lidera las revistas con 39 artículos, lo que indica concentración en revistas altamente productivas. El análisis de la coocurrencia de palabras clave revela áreas temáticas frecuentes, destacando "inteligencia artificial", "educación", "tecnología", "aprendizaje automático" y "Big data". La institución líder es la Universidad China de Hong Kong, mientras que China destaca con 61 trabajos a nivel de país. Destaca la importancia de considerar calidad y cantidad en la producción científica e identifica cinco temas clave en los resúmenes de investigación, sugiriendo áreas de investigación enfocadas en la integración de tecnología e innovación educativa.  

Bibliographic References

  • Almalki, Y. E., Qayyum, A., Irfan, M., Haider, N., Glowacz, A., Alshehri, F. M., Alduraibi, S. K., Alshamrani, K., Alkhalik Basha, M. A., Alduraibi, A., Saeed, M. K., & Rahman, S. (2021). A Novel Method for COVID-19 Diagnosis Using Artificial Intelligence in Chest X-ray Images. Healthcare, 9(5), 522. https://doi.org/10.3390/healthcare9050522
  • Arís, N., & Orcos, L. (2019). Educational Robotics in the Stage of Secondary Education: Empirical Study on Motivation and STEM Skills. Education Sciences, 9(2), 73. https://doi.org/10.3390/educsci9020073
  • Bañeres, D., Rodríguez, M. E., Guerrero-Roldán, A. E., & Karadeniz, A. (2020). An Early Warning System to Detect At-Risk Students in Online Higher Education. Applied Sciences, 10(13), 4427. https://doi.org/10.3390/app10134427
  • Birkle, C., Pendlebury, D. A., Schnell, J., & Adams, J. (2020). Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies, 1(1), 363- 376. https://doi.org/10.1162/qss_a_00018
  • Chai, C. S., Chiu, T. K. F., Wang, X., Jiang, F., & Lin, X.-F. (2022). Modeling Chinese Secondary School Students’ Behavioral Intentions to Learn Artificial Intelligence with the Theory of Planned Behavior and Self-Determination Theory. Sustainability, 15(1), 605. https://doi.org/10.3390/su15010605
  • Chevalier, M., Giang, C., Piatti, A., & Mondada, F. (2020). Fostering computational thinking through educational robotics: A model for creative computational problem solving. International Journal of STEM Education, 7(1), 39. https://doi.org/10.1186/s40594-020- 00238-z
  • Chu, C. H., Nyrup, R., Leslie, K., Shi, J., Bianchi, A., Lyn, A., McNicholl, M., Khan, S., Rahimi, S., & Grenier, A. (2022). Digital Ageism: Challenges and Opportunities in Artificial Intelligence for Older Adults. The Gerontologist, 62(7), 947-955. https://doi.org/10.1093/geront/gnab167
  • Cooper, G. (2023). Examining Science Education in ChatGPT: An Exploratory Study of Generative Artificial Intelligence. Journal of Science Education and Technology, 32(3), 444-452. https://doi.org/10.1007/s10956-023-10039-y
  • Demertzis, K., Demertzis, S., & Iliadis, L. (2023). A Selective Survey Review of Computational Intelligence Applications in the Primary Subdomains of Civil Engineering Specializations. Applied Sciences, 13(6), 3380. https://doi.org/10.3390/app13063380
  • Derviş, H. (2020). Bibliometric Analysis using Bibliometrix an R Package. Journal of Scientometric Research, 8(3), 156-160. https://doi.org/10.5530/jscires.8.3.32
  • Di Lieto, M. C., Castro, E., Pecini, C., Inguaggiato, E., Cecchi, F., Dario, P., Cioni, G., & Sgandurra, G. (2020). Improving Executive Functions at School in Children with Special Needs by Educational Robotics. Frontiers in Psychology, 10, 2813. https://doi.org/10.3389/fpsyg.2019.02813
  • Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., Duan, Y., Dwivedi, R., Edwards, J., Eirug, A., Galanos, V., Ilavarasan, P. V., Janssen, M., Jones, P., Kar, A. K., Kizgin, H., Kronemann, B., Lal, B., Lucini, B., … Williams, M. D. (2021). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 57, 101994. https://doi.org/10.1016/j.ijinfomgt.2019.08.002
  • García-Valcárcel-Muñoz-Repiso, A., & Caballero-González, Y.-A. (2019). Robotics to develop computational thinking in early Childhood Education. Comunicar, 27(59), 63- 72. https://doi.org/10.3916/C59-2019-06
  • Garrido Merchán, E., & Lumbreras, S. (2023). Can Computational Intelligence Model Phenomenal Consciousness? Philosophies, 8(4), 70. https://doi.org/10.3390/philosophies8040070
  • Gastaldo, P., Pinna, L., Seminara, L., Valle, M., & Zunino, R. (2014). Computational Intelligence Techniques for Tactile Sensing Systems. Sensors, 14(6), 10952-10976. https://doi.org/10.3390/s140610952
  • Gupta, P., Maji, S., & Mehra, R. (2022). Stress and Machine Learning: Future with Possibilities- A Bibliometric Approach. Journal of Scientometric Research, 11(1), 37-46. https://doi.org/10.5530/jscires.11.1.4
  • Gupta, S., Motlagh, M., & Rhyner, J. (2020). The Digitalization Sustainability Matrix: A Participatory Research Tool for Investigating Digitainability. Sustainability, 12(21), 9283. https://doi.org/10.3390/su12219283
  • Hariri, R. H., Fredericks, E. M., & Bowers, K. M. (2019). Uncertainty in big data analytics: Survey, opportunities, and challenges. Journal of Big Data, 6(1), 44. https://doi.org/10.1186/s40537-019-0206-3
  • Jia, F., Sun, D., Ma, Q., & Looi, C.-K. (2022). Developing an AI-Based Learning System for L2 Learners’ Authentic and Ubiquitous Learning in English Language. Sustainability, 14(23), 15527. https://doi.org/10.3390/su142315527
  • Kosan, E., Krois, J., Wingenfeld, K., Deuter, C. E., Gaudin, R., & Schwendicke, F. (2022). Patients’ Perspectives on Artificial Intelligence in Dentistry: A Controlled Study. Journal of Clinical Medicine, 11(8), 2143. https://doi.org/10.3390/jcm11082143
  • Krath, J., Schürmann, L., & Von Korflesch, H. F. O. (2021). Revealing the theoretical basis of gamification: A systematic review and analysis of theory in research on gamification, serious games and game-based learning. Computers in Human Behavior, 125, 106963. https://doi.org/10.1016/j.chb.2021.106963
  • Kraus, S., Breier, M., Lim, W. M., Dabić, M., Kumar, S., Kanbach, D., Mukherjee, D., Corvello, V., Piñeiro-Chousa, J., Liguori, E., Palacios-Marqués, D., Schiavone, F., Ferraris, A., Fernandes, C., & Ferreira, J. J. (2022). Literature reviews as independent studies: Guidelines for academic practice. Review of Managerial Science, 16(8), 2577- 2595. https://doi.org/10.1007/s11846-022-00588-8
  • Kurata, K., Miyashita, S., Sengoku, S., Kodama, K., & Lim, Y. J. (2023). A Comparative Analysis of Social Entrepreneurship and Entrepreneurship: An Examination of International Co-Authorship Networks. Sustainability, 15(22), 15873. https://doi.org/10.3390/su152215873
  • Lee, H. S., & Lee, J. (2021). Applying Artificial Intelligence in Physical Education and Future Perspectives. Sustainability, 13(1), 351. https://doi.org/10.3390/su13010351
  • Liu, Y., Zhou, Y., Liu, X., Dong, F., Wang, C., & Wang, Z. (2019). Wasserstein GAN-Based Small-Sample Augmentation for New-Generation Artificial Intelligence: A Case Study of Cancer-Staging Data in Biology. Engineering, 5(1), 156-163. https://doi.org/10.1016/j.eng.2018.11.018
  • Liu, Y.-L., Yuan, W.-J., & Zhu, S.-H. (2022). The state of social science research on COVID- 19. Scientometrics, 127(1), 369-383. https://doi.org/10.1007/s11192-021-04206-4
  • Luckin, R., & Cukurova, M. (2019). Designing educational technologies in the age of AI: A learning sciences‐driven approach. British Journal of Educational Technology, 50(6), 2824-2838. https://doi.org/10.1111/bjet.12861
  • Mhlanga, D. (2021). Artificial Intelligence in the Industry 4.0, and Its Impact on Poverty, Innovation, Infrastructure Development, and the Sustainable Development Goals: Lessons from Emerging Economies? Sustainability, 13(11), 5788. https://doi.org/10.3390/su13115788
  • Miró-Nicolau, M., Moyà-Alcover, G., & Jaume-i-Capó, A. (2022). Evaluating Explainable Artificial Intelligence for X-ray Image Analysis. Applied Sciences, 12(9), 4459. https://doi.org/10.3390/app12094459
  • Murshed, B. A. H., Mallappa, S., Abawajy, J., Saif, M. A. N., Al-ariki, H. D. E., & Abdulwahab, H. M. (2023). Short text topic modelling approaches in the context of big data: Taxonomy, survey, and analysis. Artificial Intelligence Review, 56(6), 5133- 5260. https://doi.org/10.1007/s10462-022-10254-w
  • Nadarzynski, T., Miles, O., Cowie, A., & Ridge, D. (2019). Acceptability of artificial intelligence (AI)-led chatbot services in healthcare: A mixed-methods study. DIGITAL HEALTH, 5, 205520761987180. https://doi.org/10.1177/2055207619871808
  • Poria, S., Majumder, N., Mihalcea, R., & Hovy, E. (2019). Emotion Recognition in Conversation: Research Challenges, Datasets, and Recent Advances. IEEE Access, 7, 100943-100953. https://doi.org/10.1109/ACCESS.2019.2929050
  • Prendes Espinosa, M. P., & Cerdán Cartagena, F. (2020). Tecnologías avanzadas para afrontar el reto de la innovación educativa. RIED. Revista Iberoamericana de Educación a Distancia, 24(1), 35. https://doi.org/10.5944/ried.24.1.28415
  • Singh, V. K., Singh, P., Karmakar, M., Leta, J., & Mayr, P. (2021). The journal coverage of Web of Science, Scopus and Dimensions: A comparative analysis. Scientometrics, 126(6), 5113-5142. https://doi.org/10.1007/s11192-021-03948-5
  • Suhaila, J., & Hamdan, M. F. (2023). Research Trends on Functional Data Analysis Using Scopus Database: A Bibliometric Analysis. Malaysian Journal of Fundamental and Applied Sciences, 19(4), 494-512. https://doi.org/10.11113/mjfas.v19n4.2863
  • Tam, W., Huynh, T., Tang, A., Luong, S., Khatri, Y., & Zhou, W. (2023). Nursing education in the age of artificial intelligence powered Chatbots (AI-Chatbots): Are we ready yet? Nurse Education Today, 129, 105917. https://doi.org/10.1016/j.nedt.2023.105917
  • Thiebes, S., Lins, S., & Sunyaev, A. (2021). Trustworthy artificial intelligence. Electronic Markets, 31(2), 447-464. https://doi.org/10.1007/s12525-020-00441-4
  • Van de Schoot, R., de Bruin, J., Schram, R., Zahedi, P., de Boer, J., Weijdema, F., Kramer, B., Huijts, M., Hoogerwerf, M., Ferdinands, G., Harkema, A., Willemsen, J., Ma, Y., Fang, Q., Hindriks, S., Tummers, L., & Oberski, D. L. (2021). An open-source machine learning framework for efficient and transparent systematic reviews. Nature Machine Intelligence, 3(2), 125-133. https://doi.org/10.1038/s42256-020-00287-7
  • Van Eck, N. J., & Waltman, L. (2014). Visualizing Bibliometric Networks. En Y. Ding, R. Rousseau, & D. Wolfram (Eds.), Measuring Scholarly Impact (pp. 285-320). Springer International Publishing. https://doi.org/10.1007/978-3-319-10377-8_13
  • Van-Eck, N. J., & Waltman, L. (2023). VOSviewer Manual. Univeristeit Leiden. http://www.vosviewer.com/documentation/Manual_VOSviewer_1.6.1.pdf
  • Wallace, M., & Poulopoulos, V. (2022). Pursuing Social Justice in Educational Robotics. Education Sciences, 12(8), 565. https://doi.org/10.3390/educsci12080565
  • Wang, X., Yin, N., & Zhang, Z. (2021). Smart design of intelligent companion toys for preschool children. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 35(2), 151-164. https://doi.org/10.1017/S0890060420000499
  • Yang, J., Chen, Y., Yao, G., Wang, Z., Fu, X., Tian, Y., & Li, Y. (2022). Key factors selection on adolescents with non-suicidal self-injury: A support vector machine-based approach. Frontiers in Public Health, 10, 1049069. https://doi.org/10.3389/fpubh.2022.1049069
  • Yang, M., Zhang, H., Liu, W., Yong, K., Xu, J., Luo, Y., & Zhang, H. (2023). Knowledge graph analysis and visualization of artificial intelligence applied in electrocardiogram. Frontiers in Physiology, 14, 1118360. https://doi.org/10.3389/fphys.2023.1118360
  • Yang, Y., Qin, J., Lei, J., & Liu, Y. (2023). Research Status and Challenges on the Sustainable Development of Artificial Intelligence Courses from a Global Perspective. Sustainability, 15(12), 9335. https://doi.org/10.3390/su15129335
  • Yau, K. W., Chai, C. S., Chiu, T. K. F., Meng, H., King, I., & Yam, Y. (2023). A phenomenographic approach on teacher conceptions of teaching Artificial Intelligence (AI) in K-12 schools. Education and Information Technologies, 28(1), 1041- 1064. https://doi.org/10.1007/s10639-022-11161-x
  • Zhan, Z., Shen, W., & Lin, W. (2022). Effect of product-based pedagogy on students’ project management skills, learning achievement, creativity, and innovative thinking in a high-school artificial intelligence course. Frontiers in Psychology, 13, 849842. https://doi.org/10.3389/fpsyg.2022.849842