Minimal linear representations of the low-dimensional nilpotent Lie algebras

  1. J.C. Benjumea
  2. Juan Núñez Valdés
  3. Ángel Francisco Tenorio
Revista:
Mathematica scandinavica

ISSN: 0025-5521

Año de publicación: 2008

Volumen: 102

Número: 1

Páginas: 17-26

Tipo: Artículo

DOI: 10.7146/MATH.SCAND.A-15048 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Mathematica scandinavica

Resumen

The main goal of this paper is to compute a minimal matrix representation for each non-isomorphic nilpotent Lie algebra of dimension less than 6. Indeed, for each of these algebras, we search the natural number n∈N∖{1} such that the linear algebra gn, formed by all the n×n complex strictly upper-triangular matrices, contains a representation of this algebra. Besides, we show an algorithmic procedure which computes such a minimal representation by using the Lie algebras gn. In this way, a classification of such algebras according to the dimension of their minimal matrix representations is obtained. In this way, we improve some results by Burde related to the value of the minimal dimension of the matrix representations for nilpotent Lie algebras.