Biodiversity and distribution of macroinfauna assemblages on sandy beaches along the Gulf of Cadiz (SW Spain)

  1. Reyes-Martínez, M. José 1
  2. Ruiz-Delgado, M. Carmen 1
  3. Sánchez-Moyano, Juan Emilio 2
  4. García-García, Francisco José 1
  1. 1 Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide
  2. 2 Departamento de Zoología, Universidad de Sevilla
Journal:
Scientia Marina

ISSN: 0214-8358

Year of publication: 2015

Volume: 79

Issue: 3

Pages: 367-377

Type: Article

DOI: 10.3989/SCIMAR.04133.30A DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Scientia Marina

Abstract

In the current study, the macroinfauna communities inhabiting 12 sandy beaches along the Spanish coast of the Gulf of Cadiz were describe in order to characterize their unexplored biodiversity, their zonation patterns and their environmental features. A total of 66 macroinfauna taxa were recorded on 12 sandy beaches, ranging from 4 to 33 species. Density reached 848 individual per m2. The individual zonation pattern ranged from two to three zones, regardless of the morphodynamic state. A common zonation pattern of the whole set of beaches was established, comprising three across-shore biological zones. Generally, the supralittoral zone was typified by the air-breathing amphipod Talitrus saltator and coleopterans; the middle zone was dominated by true intertidal species, such as Haustoriidae amphipods (Haustorius arenarius), Cirolanidae isopods (Eurydice affinis), Spionidae polychaetes (Scolelepis spp.) and nemerteans; and the lower or sublittoral zone was typified by Pontoporeiidae amphipods, mysids and spionid polychaetes. Sediment moisture, average grain size, organic matter content and elevation were the main predictor variables of zonation patterns. We used the conservation and recreation potential indices to show how this information can be useful for coastal management. Most beaches studied show a score above 5 on the conservation index, so the beaches have a reasonable potential for conservation management.

Bibliographic References

  • Aerts K., Vanagt T., Degraer S., et al. 2004. Macroinfaunal community structure and zonation of an Ecuadorian sandy beach (Bay of Valdivia). Belg. Zool. 134: 15-22.
  • Allen-Brooks R., Purdy C.N., Bell S.S. et al. 2006. The benthic community of the eastern US continental shelf: A literature synopsis of benthic faunal resources.Cont. Shelf Res. 26: 804-818. http://dx.doi.org/10.1016/j.csr.2006.02.005
  • Anfuso G., Martínez del Pozo J.A., Gracia F.J., et al. 2003. Long-shore distribution of morphodynamic beach states along an apparently homogeneous coast in SW Spain. J. Coast. Conservat. 9: 49-56. http://dx.doi.org/10.1652/1400-0350(2003)009[0049:LDOMBS]2.0.CO;2
  • Anfuso E., Ponce R., González-Castro C., et al. 2010. Coupling between the thermohaline, chemical and biological fields during summer 2006 in the northeast continental shelf of the Gulf of Cadiz (SW Iberian Peninsula). Sci. Mar. 74S1: 47-56.
  • Bayed A. 2003. Influence of morphodynamic and hydroclimatic factors on the macroinfauna of Moroccan sandy beaches. Estuar. Coast. Shelf Sci. 58S: 71-82. http://dx.doi.org/10.1016/S0272-7714(03)00050-7
  • Baldó F., Drake P. 2002. A multivariate approach to the feeding habits of small fishes in the Guadalquivir Estuary. J. Fish Biol. 61: 21-32. http://dx.doi.org/10.1111/j.1095-8649.2002.tb01758.x
  • Barros F., Borzone C.A., Rosso S. 2001. Macroinfauna of six beaches near Guaratuba Bay, Southern Brazil. Braz. Arch. Biol. Techn. 44: 351-364. http://dx.doi.org/10.1590/S1516-89132001000400005
  • Benavente J., Del Río L., Anfuso G., et al. 2002. Utility of morphodynamic characterisation in the prediction of beach damage by storms. J. Coast. Res. 36: 56-64.
  • Buitrago N.R., Anfuso G. 2011. Morphological changes at Levante Beach (Cadiz, SW Spain) associated with storm events during the 2009-2010 winter seasons. J. Coast. Res. 64: 1886-1890.
  • Clarke K.R., Gorley R.N. 2006. PRIMER v6: user manual/tutorial. PRIMER-E, Plymouth, UK, 192 pp.
  • Clarke K.R. Warwick R.M. 2001. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, second ed. PRIMER-E, Plymouth, UK, 172 pp.
  • Dahl E. 1952. Some aspects of the ecology and zonation of the fauna on sandy beaches. Oikos 4: 1-27. http://dx.doi.org/10.2307/3565072
  • Dean R.G. 1973. Heuristic models of sand transport in the surf zone. Proceedings of a Conference on Engineering Dynamics in the Surf Zone (Sydney): 208-214.
  • Defeo O., Jaramillo E., Lyonnet A. 1992. Community structure and intertidal zonation of the macroinfauna on the Atlantic coast of Uruguay. J. Coast. Res. 8: 830-839.
  • Defeo O., McLachlan A., Schoeman D.S., et al. 2009. Threats to sandy beach ecosystems: A review. Estuar. Coast. Shelf Sci. 81: 1-12. http://dx.doi.org/10.1016/j.ecss.2008.09.022
  • Degraer S., De Neve, L., Mouton, I. et al. 1999. Zonation and community structure of the macrobenthos of a macrotidal, ultra-dissipative sandy beach: Summer-Winter comparison. Estuaries, 22(3B): 742-752. http://dx.doi.org/10.2307/1353107
  • Degraer S., Volckaert A., Vincx M. 2003. Macrobenthic zonation patterns along a morphodynamical continuum of macrotidal, low tide bar/rip and ultra-dissipative sandy beaches. Estuar. Coast. Shelf Sci. 56: 459-468. http://dx.doi.org/10.1016/S0272-7714(02)00195-6
  • Dexter D.M. 1983. Community structure of intertidal sandy beaches in New South Wales, Australia. In: McLachlan, A. and Erasmus T. (eds), Sandy Beaches as Ecosystems. Springer Netherlands, pp. 461-472. http://dx.doi.org/10.1007/978-94-017-2938-3_34
  • Emery K.O. 1961. A simple method of measuring beach profiles. Limnol. Oceanogr. 6: 90-93. http://dx.doi.org/10.4319/lo.1961.6.1.0090
  • Gonçalves S.C., Anastácio P.M., Pardal A.M., et al. 2009. Sandy beach macroinfaunal communities on the western coast of Portugal– Is there a steady structure under similar exposed conditions? Estuar. Coast. Shelf Sci. 81: 555-568. http://dx.doi.org/10.1016/j.ecss.2008.12.004
  • Guitián F., Carballas J. 1976. Técnicas de análisis de suelos. Pico Sacro. Santiago de Compostela, Espa-a, 288 pp.
  • Herrera-Bachiller A., García-Corrales P., Roldan C., et al. 2008. The ignored but common nemertine from the Galician beaches (Spain) Psammamphiporus elongatus, affected by the Prestige oil spill. Mar. Ecol. 29: 43-50. http://dx.doi.org/10.1111/j.1439-0485.2007.00199.x
  • Jaramillo E., McLachlan A. 1993. Community and population response of the macroinfauna to physical factors over a range of exposed sandy beaches in south-central Chile. Estuar. Coast. Shelf Sci., 37: 615-624. http://dx.doi.org/10.1006/ecss.1993.1077
  • Jaramillo E., McLachlan A, Coetzee P. 1993. Intertidal zonation patterns of macroinfauna over a range of exposed sandy beaches in south-central Chile. Mar. Ecol. Prog. Ser., 101: 105-118. http://dx.doi.org/10.3354/meps101105
  • Jaramillo E., McLachlan A., Dugan J. 1995. Total sample area and estimates of species richness in exposed sandy beaches. Mar. Ecol. Prog. Ser. 119: 311-314. http://dx.doi.org/10.3354/meps119311
  • Jaramillo E., Duarte C., Contreras H. 2000. Sandy beaches macroinfauna from the coast of Ancud, Isla Chiloé, southern Chile. Rev. Chil. Hist. Nat. 73: 771-786 http://dx.doi.org/10.4067/S0716-078X2000000400019
  • >Masselink G., Short A.D. 1993. The effect of tide range on beach morphodynamics and morphology: a conceptual beach model. J. Coast. Res. 9: 785-800.
  • Mayoral M.A., López-Serrano L, Viéitez J.M. 1994. Macroinfauna bentónica intermareal de 3 playas de la desembocadura del río Piedras (Huelva, Espa-a). Bol. R. Soc. Esp. Hist. Nat. 91: 231-240.
  • McCune B., Medford M.J. 1997. PC-ORD. Multivariate analysis of ecological data, Version 3 for Windows. MjM Software Design, Gleneden Beach, Oregon.
  • McLachlan A., Brown A.C. 2006. The ecology of sandy shores. Elsevier, Burlington.
  • McLachlan A., Dorvlo A. 2005. Global patterns in sandy beach macrobenthic communities. J. Coast. Res. 21: 674-687. http://dx.doi.org/10.2112/03-0114.1
  • McLachlan A., Jaramillo E., Donn T.E., et al. 1993. Sandy beach macroinfauna communities and their control by the physical environment: a geographical comparison. J. Coast. Res. 15: 27-38.
  • McLachlan A., Defeo O., Jaramillo E., et al. 2013. Sandy beach conservation and recreation: Guidelines for optimising management strategies for multi-purpose use. Ocean Coast. Manage. 71: 256-268. http://dx.doi.org/10.1016/j.ocecoaman.2012.10.005
  • Papageorgiou N., Arvanitidis C., Eleftheriou A. 2006. Multicausal environmental severity: A flexible framework for microtidal sandy beaches and the role of polychaetes as an indicator taxon. Estuar. Coast. Shelf Sci. 70: 643-653. http://dx.doi.org/10.1016/j.ecss.2005.11.033
  • Olabarria C., Lastra M., Garrido J. 2007. Succession of macroinfauna on macroalgal wrack of an exposed sandy beach: Effects of patch size and site. Mar. Environ. Res. 63: 19-40. http://dx.doi.org/10.1016/j.marenvres.2006.06.001 PMid:16890281
  • Pérez-Domingo S., Castellanos C., Junoy J. 2008. The sandy beach macroinfauna of Gulf of Gabés (Tunisia). Mar. Ecol. 29: 51-59. http://dx.doi.org/10.1111/j.1439-0485.2007.00201.x
  • Prieto L., García C.M., Corzo A., et al. 1999. Phytoplankton, bacterioplankton and nitrate reductase activity distribution in relation to physical structure in the northern Alborán Sea and Gulf of Cadiz (southern Iberian Peninsula). Bol. Inst. Esp. Oceanogr. 15: 401-411.
  • Puerta P., Andrade S.C.S., Junoy J. 2010. Redescription of Lineus acutifrons Southern, 1913 (Nemertea: Pilidiophora) and comments on its phylogenetic position. J. Nat. Hist. 44: 2363-2378. http://dx.doi.org/10.1080/00222933.2010.504895
  • Rodil I.F., LastraM., Sánchez-Mata, A.G. 2006. Community structure and intertidal zonation of the macroinfauna in intermediate sandy beaches in temperate latitudes: North coast of Spain. Estuar. Coast. Shelf Sci. 67: 267-279. http://dx.doi.org/10.1016/j.ecss.2005.11.018
  • Rodil I.F., Lastra M., López J. 2007. Macroinfauna community structure and biochemical composition of sedimentary organic matter along a gradient of wave exposure in sandy beaches (NW Spain). Hidrobiología 579: 301-316. http://dx.doi.org/10.1007/s10750-006-0443-2
  • Rodil I.F., Compton T.J., Lastra M. 2012. Exploring macroinvertebrate species distributions at regional and local scales across a sandy beach geographic continuum. PloS One (7)6: e39609. http://dx.doi.org/10.1371/journal.pone.0039609 PMid:22761841 PMCid:PMC3382464
  • Rolet C., Spilmont N., Dewarumez J.M. 2015. Linking macrobenthic communities structure and zonation patterns on sandy shores: Mapping tool toward management and conservation perspectives in Northern France. Cont. Shelf. Res. 99: 12-25. http://dx.doi.org/10.1016/j.csr.2015.03.002
  • Ruiz-Delgado M.C., Vieira J.V., Veloso V.G., et al. 2014. The role of wrack deposits for supralittoral arthropods: An example using Atlantic sandy beaches of Brazil and Spain. Estuar. Coast. Shelf Sci. 136: 61-71. http://dx.doi.org/10.1016/j.ecss.2013.11.016
  • Salvat B. 1964. Les conditions hydrodynamiques interstitielles des sediment meubles intertidaux et la répartition verticale de la faune endogée. C.R. Acad. Sci., Paris 259: 1567-1579.
  • Schlacher T.A., Thompson L. 2013. Spatial structure on ocean-exposed sandy beaches: faunal zonation metrics and their variability. Mar. Ecol. Prog. Ser. 478: 43-55. http://dx.doi.org/10.3354/meps10205
  • Schlacher T.A, Schoeman D.S., Jones A.R., et al. 2014. Metrics to assess ecological condition, change, and impacts in sandy beach ecosystems. J. Environ. Manage. 144: 322-335. http://dx.doi.org/10.1016/j.jenvman.2014.05.036 PMid:25014753
  • Sobrino I., Jiménez M.P., Ramos F. et al. 1994. Descripción de las pesquerías demersales de la Región Suratlántica Espa-ola. Bol. Inst. Esp. Oceanogr. 151: 3-79.
  • Souza J.R., Borzone C.A. 2000. Population dynamics and secondary production of Scolelepis squamata (Polychaeta: Spionidae) in an exposed sandy beach of southern Brazil. Bull. Mar. Sci. 67: 221-233.
  • Speybroeck J., Alsteens L., Vincx M., et al. 2007. Understanding the life of a sandy beach polychaete of functional importance – Scolelepis squamata (Polychaeta: Spionidae) on Belgian sandy beaches (northeastern Atlantic, North Sea). Estuar. Coast. Shelf Sci. 74: 109-118. http://dx.doi.org/10.1016/j.ecss.2007.04.002
  • TerBraak C.J.F. 1995. Ordination. In: Jongman, R.H.G., terBraak, C.J.F., van Tongeren, O.F.R. (eds), Data Analysis in Community and Landscape Ecology. Cambridge University Press, Cambridge, United Kingdom, pp. 91-173.
  • Torres M.A., Coll M., Heymans J.J., et al. 2013. Food-web structure of and fishing impacts on the Gulf of Cadiz ecosystem (South-western Spain). Ecol. Model. 265: 26-44. http://dx.doi.org/10.1016/j.ecolmodel.2013.05.019
  • Trask P.D. 1950. Applied sedimentation, Jon Wiley and Sons Inc, New York. http://dx.doi.org/10.5962/bhl.title.16378
  • Ugolini A., Ungherese G., Somigli S., et al. 2008. The amphipod Talitrus saltator as a bioindicator of human trampling on sandy beaches. Mar. Environ. Res. 65: 349-357. http://dx.doi.org/10.1016/j.marenvres.2007.12.002 PMid:18281086