Reposición del glucógeno muscular en la Recuperación del Deportista

  1. Fernando Mata-Ordoñez 1
  2. Moisés Grimaldi-Puyana 2
  3. Antonio Jesús Sánchez-Oliver 3
  1. 1 Nutriscience, Córdoba
  2. 2 Universidad de Sevilla
    info

    Universidad de Sevilla

    Sevilla, España

    ROR https://ror.org/03yxnpp24

  3. 3 Universidad Pablo de Olavide
    info

    Universidad Pablo de Olavide

    Sevilla, España

    ROR https://ror.org/02z749649

Revista:
Sport TK: revista euroamericana de ciencias del deporte

ISSN: 2340-8812 2254-4070

Año de publicación: 2019

Volumen: 8

Número: 1

Páginas: 57-66

Tipo: Artículo

DOI: 10.6018/SPORTK.362071 DIALNET GOOGLE SCHOLAR lock_openDIGITUM editor

Otras publicaciones en: Sport TK: revista euroamericana de ciencias del deporte

Resumen

Las estrategias nutricionales durante la fase de recuperación del deportista son fundamentales. Uno de los principales objetivos de la recu- peración es la reposición del glucógeno muscular. Este aspecto se hace más importante cuando los deportistas se enfrentan a entrenamientos intensos o eventos competitivos con cortos periodos de recuperación. Además, la manipulación deliberada de su disponibilidad puede mejorar las adaptacio- nes moleculares al entrenamiento. La presente revisión tiene por objetivo informar sobre los aspectos fisiológicos básicos de esta situación, así como conocer el momento del consumo, la cantidad, el tipo y la interacción de diferentes nutrientes con los hidratos de carbono, para poder maximizar o jugar con la reposición del mismo en función de las necesidades y/o las estrategias planteadas. El glucógeno ya no debe ser visto como un simple almacén de energía sino como una molécula que puede desencadenar nu- merosos procesos celulares importantes para el deportista.

Referencias bibliográficas

  • 1. Alghannam, A., Gonzalez, J., & Betts, J. (2018). Restoration of Muscle Glycogen and Functional Capacity: Role of Post-Exercise Carbohydrate and Protein Co-Ingestion. Nutrients, 10(2), 253. https://doi. org/10.3390/nu10020253
  • 2. Bangsbo, J., Mohr, M., & Krustrup, P. (2006). Physical and metabolic demands of training and match-play in the elite football player. In Nutrition and Football: The FIFA/FMARC Consensus on Sports Nutrition (pp. 1–18). https://doi.org/10.4324/9780203967430
  • 3. Bartlett, J. D., Hawley, J. A., & Morton, J. P. (2015). Carbohydrate availability and exercise training adaptation: Too much of a good thing? European Journal of Sport Science, 15(1), 3–12. https://doi.org/10.1080/1 7461391.2014.920926
  • 4. Beck, K. L., Thomson, J. S., Swift, R. J., & von Hurst, P. R. (2015). Role of nutrition in performance enhancement and postexercise recovery. Open Access Journal of Sports Medicine, 6, 259–67. https://doi. org/10.2147/OAJSM.S33605
  • 5. Beelen, M., Burke, L. M., Gibala, M. J., & Van Loon, L. J. C. (2010). Nutritional Strategies to Promote Postexercise Recovery. International Journal of Sport Nutrition and Exercise Metabolism, 20, 515–532. https:// doi.org/10.1123/ijsnem.20.6.515
  • 6. Beelen, M., Van Kranenburg, J., Senden, J. M., Kuipers, H., & Van Loon, L. J. C. (2012). Impact of caffeine and protein on postexercise muscle glycogen synthesis. Medicine and Science in Sports and Exercise, 44(4), 692–700. https://doi.org/10.1249/ MSS.0b013e31823a40ef
  • 7. Burke, L. M., Collier, G. R., Broad, E. M., Davis, P. G., Martin, D. T., Sanigorski, A. J., & Hargreaves, M. (2003). Effect of alcohol intake on muscle glycogen storage after prolonged exercise. Journal of Applied Physiology (Bethesda, Md. : 1985), 95(3), 983–990. https://doi. org/10.1152/japplphysiol.00115.2003
  • 8. Burke, L. M., Collier, G. R., & Hargreaves, M. (1993). Muscle glycogen storage after prolonged exercise: effect of the glycemic index of carbohydrate feedings. Journal of Applied Physiology (Bethesda, Md. : 1985), 75(2), 1019–23. Retrieved from http://www.ncbi.nlm.nih.gov/ pubmed/8226443
  • 9. Burke, L. M., Hawley, J. A., Wong, S. H. S., & Jeukendrup, A. E. (2011). Carbohydrates for training and competition. Journal of Sports Sciences, 29 Suppl 1(sup1), S17-27. https://doi.org/10.1080/02640414.2 011.585473
  • 10. Burke, L. M., & Mujika, I. (2014). Nutrition for Recovery in Aquatic Sports. International Journal of Sport Nutrition and Exercise Metabolism, 24(4), 425–436. https://doi.org/10.1123/ijsnem.2014-0022
  • 11. Burke, L. M., van Loon, L. J. C., & Hawley, J. A. (2017). Postexercise muscle glycogen resynthesis in humans. Journal of Applied Physiology, 122(5), 1055–1067. https://doi.org/10.1152/japplphysiol.00860.2016
  • 12. Close, G. L., Hamilton, D. L., Philp, A., Burke, L. M., & Morton, J. P. (2016). New strategies in sport nutrition to increase exercise performance. Free Radical Biology and Medicine, 98. https://doi.org/10.1016/j. freeradbiomed.2016.01.016
  • 13. Delarue, J., Normand, S., Pachiaudi, C., Beylot, M., Lamisse, F., & Riou, J. P. (1993). The contribution of naturally labelled 13C fructose to glucose appearance in humans. Diabetologia, 36(4), 338–345. https://doi.org/10.1007/BF00400238
  • 14. Domínguez, R., Mata-Ordoñez, F., & Sánchez-Oliver, A. J. (2017). Nutrición Deportiva Aplicada Guía para Optimizar el Rendimiento Raúl Domínguez Herrera, Fernando Mata Ordoñez, Antonio Jesús Sánchez Oliver Google Books. (ICB Editores, Ed.). Malaga, España. Retrieved from https://books.google.es/books?hl=en&lr=&id=ChkwDwAAQBAJ&oi=fnd&pg=PT12
  • 15. Evans, G. H., James, L. J., Shirreffs, S. M., & Maughan, R. J. (2017). Optimizing the restoration and maintenance of fluid balance after exercise-induced dehydration. Journal of Applied Physiology, 122(4), 945–951. https://doi.org/10.1152/japplphysiol.00745.2016
  • 16. Fuchs, C. J., Gonzalez, J. T., Beelen, M., Cermak, N. M., Smith, F. E., Thelwall, P. E., … van Loon, L. J. C. (2016). Sucrose ingestion after exhaustive exercise accelerates liver, but not muscle glycogen repletion compared with glucose ingestion in trained athletes. Journal of Applied Physiology, 120(11), 1328–1334. https://doi.org/10.1152/ japplphysiol.01023.2015
  • 17. Fullagar, H. H. K., Duffield, R., Skorski, S., Coutts, A. J., Julian, R., & Meyer, T. (2015). Sleep and recovery in team sport: Current sleeprelated issues facing professional team-sport athletes. International Journal of Sports Physiology and Performance. https://doi.org/10.1123/ ijspp.2014-0565
  • 18. Goforth, H. W., Laurent, D., Prusaczyk, W. K., Schneider, K. E., Petersen, K. F., & Shulman, G. I. (2003). Effects of depletion exercise and light training on muscle glycogen supercompensation in men. American Journal of Physiology Endocrinology And Metabolism, 285(6), E1304–E1311. https://doi.org/10.1152/ajpendo.00209.2003
  • 19. Gonzalez, J. T., Fuchs, C. J., Betts, J. A., & van Loon, L. J. C. (2017). Glucose plus fructose ingestion for post‐exercise recovery—greater than the sum of its parts? Nutrients. https://doi.org/10.3390/ nu9040344
  • 20. Gonzalez, J. T., Fuchs, C. J., Smith, F. E., Thelwall, P. E., Taylor, R., Stevenson, E. J., … van Loon, L. J. C. (2015). Ingestion of glucose or sucrose prevents liver but not muscle glycogen depletion during prolonged endurance-type exercise in trained cyclists. American Journal of Physiology Endocrinology And Metabolism, 309(12), E1032–E1039. https://doi.org/10.1152/ajpendo.00376.2015
  • 21. Goodyear, L. J., Hirshman, M. F., King, P. a, Horton, E. D., Thompson, C. M., & Horton, E. S. (1990). Skeletal muscle plasma membrane glucose transport and glucose transporters after exercise. Journal of Applied Physiology (Bethesda, Md. : 1985), 68(1), 193–198.
  • 22. Gunnarsson, T. P., Bendiksen, M., Bischoff, R., Christensen, P. M., Lesivig, B., Madsen, K., … Bangsbo, J. (2013). Effect of whey proteinand carbohydrate-enriched diet on glycogen resynthesis during the first 48h after a soccer game. Scandinavian Journal of Medicine and Science in Sports, 23(4), 508–515. https://doi.org/10.1111/j.16000838.2011.01418.x
  • 23. Halson, S. L. (2014). Sleep in elite athletes and nutritional interventions to enhance sleep. Sports Medicine, 44(SUPPL.1). https://doi. org/10.1007/s40279-014-0147-0
  • 24. Hawley, J. A., Lundby, C., Cotter, J. D., & Burke, L. M. (2018). Maximizing Cellular Adaptation to Endurance Exercise in Skeletal Muscle. Cell Metabolism. https://doi.org/10.1016/j.cmet.2018.04.014
  • 25. Hearris, M. A., Hammond, K. M., Fell, J. M., & Morton, J. P. (2018). Regulation of muscle glycogen metabolism during exercise: Implications for endurance performance and training adaptations. Nutrients. https://doi.org/10.3390/nu10030298
  • 26. Heaton, L. E., Davis, J. K., Rawson, E. S., Nuccio, R. P., Witard, O. C., Stein, K. W., … Baker, L. B. (2017). Selected In-Season Nutritional Strategies to Enhance Recovery for Team Sport Athletes: A Practical Overview. Sports Medicine. https://doi.org/10.1007/s40279-017-0759-2
  • 27. Horswill, C. A., Hickner, R. C., Scott, J. R., Costill, D. L., & Gould, D. (1990). Weight loss, dietary carbohydrate modifications, and high intensity, physical performance. Medicine and Science in Sports and Exercise, 22(4), 470–6. Retrieved from http://www.ncbi.nlm.nih.gov/ pubmed/2402206
  • 28. Howarth, K. R., Moreau, N. A., Phillips, S. M., & Gibala, M. J. (2009). Coingestion of protein with carbohydrate during recovery from endurance exercise stimulates skeletal muscle protein synthesis in humans. Journal of Applied Physiology, 106(4), 1394–1402. https://doi. org/10.1152/japplphysiol.90333.2008
  • 29. Impey, S. G., Hammond, K. M., Shepherd, S. O., Sharples, A. P., Stewart, C., Limb, M., … Morton, J. P. (2016). Fuel for the work required: A practical approach to amalgamating train-low paradigms for endurance athletes. Physiological Reports, 4(10). https://doi.org/10.14814/ phy2.12803
  • 30. Impey, S. G., Hearris, M. A., Hammond, K. M., Bartlett, J. D., Louis, J., Close, G. L., & Morton, J. P. (2018). Fuel for the Work Required: A Theoretical Framework for Carbohydrate Periodization and the Glycogen Threshold Hypothesis. Sports Medicine, 48(5), 1031–1048. https:// doi.org/10.1007/s40279-018-0867-7
  • 31. Ivy, J. L., Katz, A. L., Cutler, C. L., Sherman, W. M., & Coyle, E. F. (1988). Muscle glycogen synthesis after exercise: effect of time of carbohydrate ingestion. Journal of Applied Physiology, 64(4).
  • 32. Jensen, L., Gejl, K. D., Ørtenblad, N., Nielsen, J. L., Bech, R. D., Nygaard, T., … Frandsen, U. (2015). Carbohydrate restricted recovery from long term endurance exercise does not affect gene responses involved in mitochondrial biogenesis in highly trained athletes. Physiological Reports, 3(2). https://doi.org/10.14814/phy2.12184
  • 33. Jentjens, R., & Jeukendrup, A. E. (2003). Determinants of post-exercise glycogen synthesis during short-term recovery. Sports Medicine. https://doi.org/10.2165/00007256-200333020-00004
  • 34. Jentjens, R. L., van Loon, L. J., Mann, C. H., Wagenmakers, a J., & Jeukendrup, a E. (2001). Addition of protein and amino acids to carbohydrates does not enhance postexercise muscle glycogen synthesis. Journal of Applied Physiology (Bethesda, Md. : 1985), 91(2), 839–846. https://doi.org/10.1152/jappl.2001.91.2.839
  • 35. Jozsi, A. C., Trappe, T. A., Starling, R. D., Goodpaster, B., Trappe, S. W., Fink, W. J., & Costill, D. L. (1996). The influence of starch structure on glycogen resynthesis and subsequent cycling performance. International Journal of Sports Medicine, 17(5), 373–378. https://doi. org/10.1055/s-2007-972863
  • 36. Keizer, H. A., Kuipers, H., van Kranenburg, G., & Geurten, P. (1987). Influence of liquid and solid meals on muscle glycogen resynthesis, plasma fuel hormone response, and maximal physical working capacity. International Journal of Sports Medicine, 8(2), 99–104. https://doi. org/10.1055/s-2008-1025649
  • 37. Kellmann, M., Bertollo, M., Bosquet, L., Brink, M., Coutts, A. J., Duffield, R., … Beckmann, J. (2018). Recovery and performance in sport: Consensus statement. International Journal of Sports Physiology and Performance, 13(2), 240–245. https://doi.org/10.1123/ijspp.2017-0759
  • 38. Kiens, B., Raben, A. B., Valeur, A. K., & Richter, E. A. (1990). Benefit of dietary simple carbohydrates on the early postexercise muscle glycogen repletion in male athletes [abstract]. Medicine and Science in Sports and Exercise, 22(2 (suppl. 1)), S88. https://doi.org/10.1249/00005768199004000-00524
  • 39. Knuiman, P., Hopman, M. T. E., & Mensink, M. (2015). Glycogen availability and skeletal muscle adaptations with endurance and resistance exercise. Nutrition and Metabolism. https://doi.org/10.1186/ s12986-015-0055-9
  • 40. Koopman, R., Crombach, N., Gijsen, A. P., Walrand, S., Fauquant, J., Kies, A. K., … Van Loon, L. J. C. (2009). Ingestion of a protein hydrolysate is accompanied by an accelerated in vivo digestion and absorption rate when compared with its intact protein. American Journal of Clinical Nutrition, 90(1), 106–115. https://doi.org/10.3945/ajcn.2009.27474
  • 41. Krustrup, P., Ortenblad, N., Nielsen, J., Nybo, L., Gunnarsson, T. P., Marcello Iaia, F., … Bangsbo, J. (2011). Maximal voluntary contraction force, SR function and glycogen resynthesis during the Wrst 72 h after a high-level competitive soccer game. European Journal of Applied Physiology, 111(12), 2987–2995. https://doi.org/10.1007/s00421-0111919-y
  • 42. Mace, O. J., Schindler, M., & Patel, S. (2012). The regulation of Kand L-cell activity by GLUT2 and the calcium-sensing receptor CasR in rat small intestine. Journal of Physiology, 590(12), 2917–2936. https://doi. org/10.1113/jphysiol.2011.223800
  • 43. Mæhlum, S., Høstmark, A. T., & Hermansen, L. (1978). Synthesis of muscle glycogen during recovery after prolonged severe exercise in diabetic subjects. Effect of insulin deprivation. Scandinavian Journal of Clinical and Laboratory Investigation, 38(1), 35–39. https://doi. org/10.3109/00365517809108400
  • 44. Matsui, T., Soya, S., Okamoto, M., Ichitani, Y., Kawanaka, K., & Soya, H. (2011). Brain glycogen decreases during prolonged exercise. Journal of Physiology, 589(13), 3383–3393. https://doi.org/10.1113/jphysiol.2010.203570
  • 45. Maunder, E., Podlogar, T., & Wallis, G. A. (2017). Postexercise Fructose-Maltodextrin Ingestion Enhances Subsequent Endurance Capacity. Medicine & Science in Sports & Exercise, 1. https://doi.org/10.1249/ MSS.0000000000001516
  • 46. Morifuji, M., Ishizaka, M., Baba, S., Fukuda, K., Matsumoto, H., Koga, J., … Higuchi, M. (2010). Comparison of different sources and degrees of hydrolysis of dietary protein: effect on plasma amino acids, dipeptides, and insulin responses in human subjects. Journal of Agricultural and Food Chemistry, 58(15), 8788–8797. https://doi.org/10.1021/ jf101912n
  • 47. Murray, B., & Rosenbloom, C. (2018). Fundamentals of glycogen metabolism for coaches and athletes. Nutrition Reviews, 76(4), 243–259. https://doi.org/10.1093/nutrit/nuy001
  • 48. Nédélec, M., Halson, S., Abaidia, A.-E., Ahmaidi, S., & Dupont, G. (2015). Stress, Sleep and Recovery in Elite Soccer: A Critical Review of the Literature. Sports Medicine, 45(10), 1387–1400. https://doi. org/10.1007/s40279-015-0358-z
  • 49. Nédélec, M., McCall, A., Carling, C., Legall, F., Berthoin, S., & Dupont, G. (2013). Recovery in soccer: Part II-recovery strategies. Sports Medicine. https://doi.org/10.1007/s40279-012-0002-0
  • 50. Nieman, D. C., & Mitmesser, S. H. (2017). Potential impact of nutrition on immune system recovery from heavy exertion: A metabolomics perspective. Nutrients. https://doi.org/10.3390/nu9050513
  • 51. Ørtenblad, N., Nielsen, J., Saltin, B., & Holmberg, H.-C. (2011). Role of glycogen availability in sarcoplasmic reticulum Ca2+ kinetics in human skeletal muscle. The Journal of Physiology, 589(Pt 3), 711–25. https://doi.org/10.1113/jphysiol.2010.195982
  • 52. Ørtenblad, N., Westerblad, H., & Nielsen, J. (2013). Muscle glycogen stores and fatigue. Journal of Physiology. https://doi.org/10.1113/jphysiol.2013.251629
  • 53. Peake, J., Neubauer, O., Walsh, N. P., & Simpson, R. J. (2017). Immune system recovery after exercise. Journal of Applied Physiology, 122, 1077–1087. https://doi.org/10.1152/japplphysiol.00622.2016
  • 54. Pedersen, D. J., Lessard, S. J., Coffey, V. G., Churchley, E. G., Wootton, A. M., Ng, T., … Hawley, J. A. (2008). High rates of muscle glycogen resynthesis after exhaustive exercise when carbohydrate is coingested with caffeine. Journal of Applied Physiology, 105(1), 7–13. https://doi. org/10.1152/japplphysiol.01121.2007
  • 55. Price, T. B., Perseghin, G., Duleba, a, Chen, W., Chase, J., Rothman, D. L., … Shulman, G. I. (1996). NMR studies of muscle glycogen synthesis in insulin-resistant offspring of parents with non-insulin-dependent diabetes mellitus immediately after glycogen-depleting exercise. Proceedings of the National Academy of Sciences of the United States of America, 93(11), 5329–34. https://doi.org/10.1073/pnas.93.11.5329
  • 56. Price, T. B., Rothman, D. L., Taylor, R., Avison, M. J., Shulman, G. I., & Shulman, R. G. (1994). Human muscle glycogen resynthesis after exercise: insulin-dependent and -independent phases. Journal of Applied Physiology (Bethesda, Md. : 1985), 76(1), 104–111.
  • 57. Ranchordas, M. K., Dawson, J. T., & Russell, M. (2017). Practical nutritional recovery strategies for elite soccer players when limited time separates repeated matches. Journal of the International Society of Sports Nutrition. https://doi.org/10.1186/s12970-017-0193-8
  • 58. Reitelseder, S., Agergaard, J., Doessing, S., Helmark, I. C., Lund, P., Kristensen, N. B., … Holm, L. (2011). Whey and casein labeled with L-[1-13C]leucine and muscle protein synthesis: effect of resistance exercise and protein ingestion. American Journal of Physiology. Endocrinology and Metabolism, 300(1), E231–E242. https://doi.org/10.1152/ ajpendo.00513.2010
  • 59. Roberts, P. A., Fox, J., Peirce, N., Jones, S. W., Casey, A., & Greenhaff, P. L. (2016). Creatine ingestion augments dietary carbohydrate mediated muscle glycogen supercompensation during the initial 24 h of recovery following prolonged exhaustive exercise in humans. Amino Acids, 48(8), 1831–1842. https://doi.org/10.1007/s00726016-2252-x
  • 60. Safdar, A., Yardley, N. J., Snow, R., Melov, S., & Tarnopolsky, M. A. (2008). Global and targeted gene expression and protein content in skeletal muscle of young men following short-term creatine monohydrate supplementation. Physiological Genomics, 32(2), 219–228. https://doi. org/10.1152/physiolgenomics.00157.2007
  • 61. Sánchez Oliver, A. J. (2013). Suplementación nutricional en la actividad físico-deportiva : análisis de la calidad del suplemento proteico consumido. Granada: Editorial de la Universidad de Granada. Retrieved from http://hdl.handle.net/10481/26382
  • 62. Silva, P., Lott, R., Wickrama, K. a S., Mota, J., & Welk, G. (2011). Effects of coffee components on muscle glycogen recovery: a systematic review. International Journal of Sport Nutrition and Exercise Metabolism, 32, 1–44. https://doi.org/10.1123/ijspp.2015-0012
  • 63. Simmons, E., McGrane, O., & Wedmore, I. (2015). Jet lag modification. Current Sports Medicine Reports, 14(2), 123–128. https://doi. org/10.1249/JSR.0000000000000133
  • 64. Terrados, N., Mielgo-Ayuso, J., Delextrat, A., Ostojic, S. M., & Calleja-Gonzalez, J. (2018). Dieteticnutritional, physical and physiological recovery methods post-competition in team sports. A review. The Journal of Sports Medicine and Physical Fitness. https://doi.org/10.23736/ S0022-4707.18.08169-0
  • 65. Trommelen, J., Beelen, M., Pinckaers, P. J. M., Senden, J. M., Cermak, N. M., & Van Loon, L. J. C. (2016). Fructose coingestion does not accelerate postexercise muscle glycogen repletion. Medicine and Science in Sports and Exercise, 48(5), 907–912. https://doi.org/10.1249/ MSS.0000000000000829
  • 66. Tsai, T. W., Chang, C. C., Liao, S. F., Liao, Y. H., Hou, C. W., Tsao, J. P., & Cheng, I. S. (2017). Effect of green tea extract supplementation on glycogen replenishment in exercised human skeletal muscle. British Journal of Nutrition, 117(10), 1343–1350. https://doi.org/10.1017/ S0007114517001374
  • 67. van Hall, G., Shirreffs, S. M., & Calbet, J. a. (2000). Muscle glycogen resynthesis during recovery from cycle exercise: no effect of additional protein ingestion. Journal of Applied Physiology (Bethesda, Md. : 1985), 88(5), 1631–1636.
  • 68. van Loon, L. J., Saris, W. H., Kruijshoop, M., & Wagenmakers, A. J. (2000). Maximizing postexercise muscle glycogen synthesis: carbohydrate supplementation and the application of amino acid or protein hydrolysate mixtures. The American Journal of Clinical Nutrition, 72(1), 106–11. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10871568