Suitability of olive oil washing water as an electron donor in a feed batch operating bio-electrochemical system

  1. Fermoso, F. G.
  2. Fernández-Rodríguez, M. J.
  3. Jiménez-Rodríguez, A.
  4. Serrano, A.
  5. Borja, R.
Revista:
Grasas y aceites

ISSN: 0017-3495 1988-4214

Año de publicación: 2017

Volumen: 68

Número: 2

Tipo: Artículo

DOI: 10.3989/GYA.0216171 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Grasas y aceites

Resumen

El agua de lavado del aceite de oliva procedente del proceso de elaboración en dos fases fue utilizada como donador de electrones en un Sistema Bioelectroquímico (BES) operado a 35ºC. Se realizó una etapa de arranque del sistema mediante alimentación con acetato, alcanzando un potencial de referencia de +680 mV. Tras 54 días, el sistema se alimentó con agua de lavado de aceite, generando un potencial máximo de +520 mV y una eliminación de materia del 41%, en demanda química de oxígeno. Sin embargo, cargas subsecuentes conllevaron una bajada en la eliminación de materia, mientras que la densidad de corriente y de potencia disminuyeron ostensiblemente. El empeoramiento de estos parámetros puede deberse a la acumulación de compuestos recalcitrantes o inhibidores, como fenoles. Por tanto, el uso del agua de lavado de aceite de oliva en un BES es factible, aunque es necesario llevar a cabo nuevas investigaciones que hagan más atractiva su aplicación a escala real.

Referencias bibliográficas

  • Acar YB, Li H, Gale RJ. 1992. Phenol removal from kaolinite by electrokinetics. J. Geotech. Eng. 118, 1837-1852. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:11(1837)
  • Aelterman P, Freguia S, Keller J, Verstraete W, Rabaey K. 2008. The anode potential regulates bacterial activity in microbial fuel cells. Appl. Microbiol. Biotechnol. 78, 409–418. https://doi.org/10.1007/s00253-007-1327-8 PMid:18193419 APHA-AWWA-WPCF. 1998. Standard Methods for the Examination of Water and Wastewater, 20th edition, Washington DC, USA.
  • Bajracharya S, Sharma M, Mohanakrishna G, Dominguez- Benneton X, Strik DPBTB, Sarma PM, Pant D. 2016. An overview on emerging bioelectrochemical systems (BESs): Technology for sustainable electricity, waste remediation, resource recovery, chemical production and beyond. Renew. Energ. 98, 153–170. https://doi.org/10.1016/j.renene.2016.03.002
  • Balasundram N, Sundram K, Samman S. 2006. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 99, 191–203. https://doi.org/10.1016/j.foodchem.2005.07.042
  • Borja R, Raposo F, Rincón B. 2006. Treatment technologies of liquid and solid wastes from two-phase olive oil mills. Grasas Aceites 57, 32–46. https://doi.org/10.3989/gya.2006.v57.i1.20
  • Borole AP, Hamilton CY, Schell DJ. 2013. Conversion of residual organics in corn stover-derived biorefinery stream to bioenergy via a microbial fuel cell. Environ. Sci. Technol. 47, 642–648. https://doi.org/10.1021/es3023495 PMid:23194288
  • Capodaglio AG, Molognoni D, Dallago E, Liberale A, Cella R, Longoni P, Pantaleoni L. 2013. Microbial Fuel Cells for Direct Electrical Energy Recovery from Urban Wastewaters. Scientific World Journal, 1–8. https://doi.org/10.1155/2013/634738 PMid:24453885 PMCid:PMC3881690
  • Catal T, Xu S, Li K, Bermek H, Liu H. 2008. Electricity generation from polyalcohols in single-chamber microbial fuel cells. Biosens. Bioelectron. 24, 849–854. https://doi.org/10.1016/j.bios.2008.07.015 PMid:18760591
  • Chen H, Yao J, Wang F, Zhou Y, Chen K, Zhuang R, Choi MM, Zaray G. 2010. Toxicity of three phenolic compounds and their mixtures on the gram-positive bacteria Bacillus subtilis in the aquatic environment. Sci. Total Environ. 408, 1043–1049. https://doi.org/10.1016/j.scitotenv.2009.11.051 PMid:20006374
  • Cirik K. 2014. Optimization of bioelectricity generation in fed-batch microbial fuel cell: Effect of electrode material, initial substrate concentration and cycle time. Appl. Biochem. Biotechnol. 173, 205–214. https://doi.org/10.1007/s12010-014-0834-1 PMid:24639089
  • Clauwaert P, Toledo R, Van Der Ha D, Crab R, Verstraete W, Hu H, Udert KM, Rabaey K. 2008. Combining biocatalyzed electrolysis with anaerobic digestion. Water Sci. Technol. 57(4), 575–579. https://doi.org/10.2166/wst.2008.084 PMid:18359998
  • García A, Rodríguez-Juan E, Rodríguez-Gutiérrez G, Rios JJ, Fernández-Bola-os, J. 2016. Extraction of phenolic compounds from virgin olive oil by deep eutectic solvents (DESs). Food Chem. 197, 554–561. https://doi.org/10.1016/j.foodchem.2015.10.131 PMid:26616988
  • Ghangrekar MM, Murthy SSR, Behera M, Duteanu N. 2010. Effect of sulfate concentration in the wastewater on microbial fuel cell performance. Environ. Eng. Manage. J. 9, 1227–1234.
  • Hauptmeier K, Penkuhn M, Tsatsaronis G. 2016. Economic assessment of a solid oxide fuel cell system for biogas utilization in sewage plants. Energ. 117, 361–368. https://doi.org/10.1016/j.energy.2016.05.072
  • Hernández-Fernández FJ, Pérez de los Rios A, Salar-García MJ, Ortiz-Martínez VM, Lozano-Blanco LJ, Godínez C, Tomás-Alonso F, Quesada-Medina J. 2015. Recent progress and perspectives in microbial fuel cells for bioenergy generation and wastewater treatment. Fuel Process. Technol. 138, 284–297. https://doi.org/10.1016/j.fuproc.2015.05.022
  • IOOC, 2016. http://www.internationaloliveoil.org/ (accessed 21.11.16).
  • Khoufi S, Aouissaoui H, Penninckx M, Sayadi S. 2004. Application of electro-Fenton oxidation for the detoxification of olive mill wastewater phenolic compounds. Water Sci. Technol. 49, 97–102. PMid:15077955
  • Koók L, Rózsenberszki T, Nemestóthy N, Bélafi-Bakó K, Bakonyi P. 2016. Bioelectrochemica treatment of municipal waste liquor in microbial fuel cells for energy valorization. J. Clean. Prod. 112, 4406–4412. https://doi.org/10.1016/j.jclepro.2015.06.116
  • Mohamed AA, Khalil AA, El-Beltagi HES. 2010. Antioxidant and antimicrobial properties of kaff maryam (Anastatica hierochuntica) and doum palm (Hyphaene thebaica). Grasas Aceites 61, 67–75. https://doi.org/10.3989/gya.064509
  • Nimje VR, Chen CY, Chen CC, Chang YF, Shih RC. 2011. Microbial fuel cell of Enterobacter cloacae: Effect of anodic pH microenvironment on current, power density, internal resistance and electrochemical losses. Int. J. Hydrogen Energy 36, 11093–11101. https://doi.org/10.1016/j.ijhydene.2011.05.159
  • Rincon B, Fermoso FG, Borja R. 2012. Olive Oil Mill Waste Treatment:Improving the Sustainability of the Olive Oil Industry with Anaerobic Digestion Technology, Olive Oil - Constituents, Quality, Health Properties and Bioconversions, Dr. Dimitrios Boskou (Ed.), InTech.
  • Sciarria TP, Tenca A, D’Epifanio A, Macheri B, Merlino G, Barbato M, Borin S, Licoccia S, Garavaglia V, Adani F. 2013. Using olive mill wastewater to improve performance in producing electricity from domestic wastewater by using single-chamber microbial fuel cell. Bioresour. Technol. 147, Sleutels THJA, Hamelers HVM, Rozendal RA, Buisman CJN. 2009. Ion transport resistance in microbial electrolysis cells with anion and cation exchange membranes. Int. J. Hydrogen Energ. 34, 3612–3620.
  • Sonowane JM, Gupta A, Ghosh PC. 2013. Multi-electrode microbial fuel cell (MEMFC): A close analysis towards large scale system architecture. Int. J. Hydrogen Energ. 38, 5106–5114. https://doi.org/10.1016/j.ijhydene.2013.02.030
  • Sulonen MLK, Kokko ME, Lakaniemi AM, Puhakka JA. 2014. Electricity generation from tetrathionate in microbial fuel cells by acidophiles. J. Hazard. Mater. 284, 182–189. https://doi.org/10.1016/j.jhazmat.2014.10.045 PMid:25463232
  • Ter Heijne A, Hamelers HVM, De Wilde V, Rozendal RA, Buisman CJN. 2006. A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells. Environ. Sci. Technol. 40, 5200–5205. https://doi.org/10.1021/es0608545 PMid:16999089
  • Uría N, Sánchez D, Mas R, Sánchez O, Mu-oz FX, Mas J. 2012. Effect of the cathode/anode ratio and the choice of cathode catalyst on the performance of microbial fuel cell transducers for the determination of microbial activity. Sensors and Actuators B: Chem. 170, 88–94. https://doi.org/10.1016/j.snb.2011.02.030
  • Yang H, Zhou M, Liu M, Yang W, Gu T. 2015. Microbial fuel cells for biosensor applications. Biotechnol. Lett. 37, 2357–2364. https://doi.org/10.1007/s10529-015-1929-7 PMid:26272393
  • Zhang YJ, Sun CY, Liu XY, Dong YX, Li YF. 2013. Electricity production from molasses wastewater in two-chamber microbial fuel cell. Water Sci. Technol. 68, 494–498. https://doi.org/10.2166/wst.2013.261 PMid:23863446