Efecto de modificar la profundidad y velocidad del contramovimiento durante el salto vertical

  1. Sánchez-Sixto, Alberto 1
  2. López-Álvarez, Julio 2
  3. Floría, Pablo 3
  1. 1 Fundación CEU San Pablo Andalucia
  2. 2 Fundación CEU Andalucia.
  3. 3 Universidad Pablo de Olavide

    Universidad Pablo de Olavide

    Sevilla, España

    ROR https://ror.org/02z749649

Retos: nuevas tendencias en educación física, deporte y recreación

ISSN: 1579-1726 1988-2041

Year of publication: 2018

Issue: 34

Pages: 287-290

Type: Article

DOI: 10.47197/RETOS.V0I34.64854 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

More publications in: Retos: nuevas tendencias en educación física, deporte y recreación


Purpose. The aim of the study was to evaluate the effects of countermovement depth and velocity modification in the vertical jump. Materials and methods. Eleven team sport players participated in this investigation performing nine countermovement jumps: 3 self-selected countermovement jumps (CMJ), 3 countermovement jumps with a deeper countermovement depth (CMJP) and 3 countermovement jumps with a deeper countermovement depth and a higher downward movement velocity (CMJPR). Jump height, time, force, velocity and center of mass displacement were measured during the countermovement and the propulsion phase. Results. No differences in jump height were found between the three types of jump. CMJPR showed a substantial increase in maximum force and initial force in comparison with the CMJ. CMJP force variables were lower than the values obtained during the CMJ. The time of the countermovement phase was lower in the CMJ in comparison with the CMJP, and no differences were found between the CMJ and the CMJPR. The time of the propulsion phase was lower than the other countermovement jumps performed. Conclusion. Increases in the countermovement depth of the CMJ through a simple instruction did not increase the vertical jump performance in the present investigation.

Bibliographic References

  • Bobbert, M. F., Casius, L. R., Sijpkens, I. W., & Jaspers, R. T. (2008). Humans adjust control to initial squat depth in vertical squat jumping. Journal of Applied Physiology, 105, 1428-1440.
  • Domire, Z. J., & Challis, J. H. (2007). The influence of squat depth on maximal vertical jump performance. Journal of Sports Sciences, 25, 193-200.
  • Domire, Z. J., & Challis, J. H. (2015). Maximum height and minimum time vertical jumping. Journal of Biomechanics, 48, 2865-2870.
  • Gheller, R. G., Dal Pupo, J., Ache-Dias, J., Detanico, D., Padulo, J., & dos Santos, S. G. (2015). Effect of different knee starting angles on intersegmental coordination and performance in vertical jumps. Human Movement Science, 42, 71-80.
  • González-Badillo, J., & Marques, M. (2010). Relationship between kinematic factors and countermovement jump height in trained track and field athletes. Journal of Strength and Conditioning Research, 24, 3443-3447.
  • Hopkins, W., Marshall, S., Batterham, A., & Hanin, J. (2009). Progressive statistics for studies in sports medicine and exercise science. Medicine and Science in Sports and Exercise, 41, 3.
  • Jidovtseff, B., Quievre, J., Nigel, H., & Cronin, J. (2014). Influence of jumping strategy on kinetic parameters. The Journal of Sports Medicine and Physical Fitness, 54, 129-138.
  • Kirby, T. J., McBride, J. M., Haines, T. L., & Dayne, A. M. (2011). Relative net vertical impulse determines jumping performance. Journal of Applied Biomechanics, 27, 207-214.
  • Linthorne, N. P. (2001). Analysis of standing vertical jumps using a force platform. American Journal of Physics, 69, 1198-1204.
  • Mandic, R., Jakovljevic, S., & Jaric, S. (2015). Effects of countermovement depth on kinematic and kinetic patterns of maximum vertical jumps. Journal of Electromyography and Kinesiology, 25, 265-272.
  • Mandic, R., Knezevic, O. M., Mirkov, D. M., & Jaric, S. (2016). Control strategy of maximum vertical jumps: The preferred countermovement depth may not be fully optimized for jump height. Journal of Human Kinetics, 52, 85-94.
  • Markovic, Mirkov, D., Knezevic, O., & Jaric, S. (2013). Jump training with different loads: effects on jumping performance and power output. European Journal of Applied Physiology, 113, 2511-2521.
  • Markovic, Mirkov, D., Nedeljkovic, A., & Jaric, S. (2014). Body size and countermovement depth confound relationship between muscle power output and jumping performance. Human Movement Science, 33, 203-210.
  • McBride, J. M., Kirby, T. J., Haines, T. L., & Skinner, J. (2010). Relationship between relative net vertical impulse and jump height in jump squats performed to various squat depths and with various loads. International Journal of Sports Physiology and Performance, 5, 484-496.
  • Moran, K. A., & Wallace, E. S. (2007). Eccentric loading and range of knee joint motion effects on performance enhancement in vertical jumping. Human Movement Science, 26, 824-840.
  • Salles, A. S., Baltzopoulos, V., & Rittweger, J. (2011). Differential effects of countermovement magnitude and volitional effort on vertical jumping. European Journal of Applied Physiology, 111, 441-448.
  • Sánchez-Sixto, A., & Floría, P. (2017). Efecto del entrenamiento combinado de fuerza y pliometría en variables biomecánicas del salto vertical en jugadoras de baloncesto. Effects of combined plyometric and resistance training in biomechanical variables of the vertical jump in basketball players. Retos: nuevas tendencias en educación física, deporte y recreación, 31, 114-117.
  • Sánchez-Sixto, A., Harrison, A., & Floría, P. (2016). Simple instructions on the crouch position improve performance in the countermovement jump. 34 International Conference on Biomechanics in Sports, 949-952.
  • Street, G., McMillan, S., Board, W., Rasmussen, M., & Heneghan, J. M. (2001). Sources of error in determining countermovement jump height with the impulse method. Journal of Applied Biomechanics, 17, 43-54.
  • Vetter, R. E. (2007). Effects of six warm-up protocols on sprint and jump performance. The Journal of Strength and Conditioning Research, 21, 819-823.