La importancia de la profundidad del contramovimiento en el ciclo estiramiento-acortamiento

  1. A. Sánchez-Sixto 1
  2. Andrew J. Harrison 2
  3. Pablo Floría 3
  1. 1 Centro de Estudios Universitarios Cardenal Spínola CEU. Bormujos (España)
  2. 2 University of Limerick. Limerick (Irlanda)
  3. 3 Universidad Pablo de Olavide. Sevilla (España)
Revista:
Revista Internacional de Medicina y Ciencias de la Actividad Física y del Deporte

ISSN: 1577-0354

Any de publicació: 2019

Volum: 19

Número: 73

Pàgines: 33-44

Tipus: Article

DOI: 10.15366/RIMCAFD2019.73.003 DIALNET GOOGLE SCHOLAR lock_openAccés obert editor

Altres publicacions en: Revista Internacional de Medicina y Ciencias de la Actividad Física y del Deporte

Resum

The aim of this investigation was to determine the influences of force application related variables and center of mass displacement on jump height differences between squat jump (SJ) and countermovement jump (CMJ). Twenty six males performed three squat jumps and three countermovement jumps with a 90° knee flexion. The center of mass displacement during the upward movement phase and the average force were significantly greater in CMJ than in SJ. Both variables explained 75% of the differences in the flight height, having 30% more influence the center of mass displacement. There were no differences in peak force. The results of this research suggest the need to examine the center of mass displacement during SJ and CMJ when a 90°of knee flexion criteria is established. 

Informació de finançament

Finançadors

Referències bibliogràfiques

  • Alexander, R. M. (1995). Leg design and jumping technique for humans, other vertebrates and insects. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 347, 235-248. doi: https://doi.org/10.1098/rstb.1995.0024.
  • Barker, L. A., Harry, J. R., & Mercer, J. A. (en prensa). Relationships Between Countermovement Jump Ground Reaction Forces and Jump Height, Reactive Strength Index, and Jump Time. Journal of Strength & Conditioning Research.
  • Bobbert, M. F., Casius, L. R., Sijpkens, I. W., & Jaspers, R. T. (2008). Humans adjust control to initial squat depth in vertical squat jumping. Journal of Applied Physiology, 105, 1428-1440. doi: https://doi.org/10.1152/japplphysiol.90571.2008.
  • Bobbert, M. F., Gerritsen, K. G., Litjens, M. C., & Van Soest, A. J. (1996). Why is countermovement jump height greater than squat jump height? Medicine and Science in Sports and Exercise, 28, 1402-1412. doi: https://doi.org/10.1097/00005768-199611000-00009.
  • Castagna, C., & Castellini, E. (2013). Vertical jump performance in Italian male and female national team soccer players. Journal of Strength & Conditioning Research, 27, 1156-1161. doi: https://doi.org/10.1519/JSC.0b013e3182610999.
  • Cormie, P., McBride, J. M., & McCaulley, G. O. (2009). Power-time, force-time, and velocity-time curve analysis of the countermovement jump: impact of training. Journal of Strength & Conditioning Research, 23, 177-186. doi: https://doi.org/10.1519/JSC.0b013e3181889324.
  • Feltner, M. E., Bishop, E. J., & Perez, C. M. (2004). Segmental and kinetic contributions in vertical jumps performed with and without an arm swing. Research Quarterly for Exercise and Sport, 75, 216-230. doi: https://doi.org/10.1080/02701367.2004.10609155.
  • González-Badillo, J. J., & Marques, M. C. (2010). Relationship between kinematic factors and countermovement jump height in trained track and field athletes. Journal of Strength and Conditioning Research, 24, 3443-3447. doi: https://doi.org/10.1519/JSC.0b013e3181bac37d.
  • Hébert-Losier, K., Jensen, K., & Holmberg, H. C. (2014). Jumping and hopping in elite and amateur orienteering athletes and correlations to sprinting and running. International Journal of Sports Physiology and Performance, 9, 993-999. doi: https://doi.org/10.1123/ijspp.2013-0486.
  • Hopkins, W., Marshall, S., Batterham, A., & Hanin, J. (2009). Progressive statistics for studies in sports medicine and exercise science. Medicine and Science in Sports and Exercise, 41, 3. doi: https://doi.org/10.1249/MSS.0b013e31818cb278.
  • Kibele, A. (1998). Possibilities and limitations in the biomechanical analysis of countermovement jumps: A methodological study. Journal of Applied Biomechanics, 14, 105-117. doi: https://doi.org/10.1123/jab.14.1.105.
  • Kirby, T. J., McBride, J. M., Haines, T. L., & Dayne, A. M. (2011). Relative net vertical impulse determines jumping performance. Journal of Applied Biomechanics, 27, 207-214. doi: https://doi.org/10.1123/jab.27.3.207.
  • Kopper, B., Ureczky, D., & Tihanyi, J. (2012). Trunk position influences joint activation pattern and physical performance during vertical jumping. Acta Physiologica Hungarica, 99, 194-205. doi: https://doi.org/10.1556/APhysiol.99.2012.2.13.
  • Linthorne, N. P. (2001). Analysis of standing vertical jumps using a force platform. American Journal of Physics, 69, 1198-1204. doi: https://doi.org/10.1119/1.1397460.
  • Lloyd, R. S., Oliver, J. L., Hughes, M. G., & Williams, C. A. (2011). The influence of chronological age on periods of accelerated adaptation of stretch-shortening cycle performance in pre and postpubescent boys. Journal of Strength and Conditioning Research, 25, 1889-1897. doi: https://doi.org/10.1519/JSC.0b013e3181e7faa8.
  • Markovic, S., Mirkov, D. M., Knezevic, O. M., & Jaric, S. (2013). Jump training with different loads: effects on jumping performance and power output. European Journal of Applied Physiology, 113, 2511-2521. Doi: https://doi.org/10.1007/s00421-013-2688-6.
  • Nuzzo, J. L., McBride, J. M., Cormie, P., & McCaulley, G. O. (2008). Relationship between countermovement jump performance and multijoint isometric and dynamic tests of strength. Journal of Strength and Conditioning Research, 22, 699-707. doi: https://doi.org/10.1519/JSC.0b013e31816d5eda.
  • Salles, A. S., Baltzopoulos, V., & Rittweger, J. (2011). Differential effects of countermovement magnitude and volitional effort on vertical jumping. European Journal of Applied Physiology, 111, 441-448. doi: https://doi.org/10.1007/s00421-010-1665-6
  • Samozino, P., Morin, J.-B., Hintzy, F., & Belli, A. (2010). Jumping ability: a theoretical integrative approach. Journal of Theoretical Biology, 264, 11-18. doi: https://doi.org/10.1016/j.jtbi.2010.01.021.
  • Sánchez-Sixto, A., Harrison, A., & Floría, P. (2016). Simple instructions on the crouch position improve performance in the countermovement jump. 34 International Conference on Biomechanics in Sports, 949-952.
  • Street, G., McMillan, S., Board, W., Rasmussen, M., & Heneghan, J. M. (2001). Sources of error in determining countermovement jump height with the impulse method. Journal of Applied Biomechanics, 17, 43-54. doi: https://doi.org/10.1123/jab.17.1.43.
  • Ugrinowitsch, C., Tricoli, V., Rodacki, A. L., Batista, M., & Ricard, M. D. (2007). Influence of training background on jumping height. Journal of Strength and Conditioning Research, 21, 848-852.
  • Vetter, R. E. (2007). Effects of six warm-up protocols on sprint and jump performance. Journal of Strength and Conditioning Research, 21, 819-823.
  • Yang, W. W., Chou, L. W., Chen, W. H., Shiang, T. Y., & Liu, C. (en prensa). Dual-frequency whole body vibration enhances vertical jumping and change-of-direction ability in rugby players. Journal of Sport and Health Science.