Mapeo de fluorescencia inducida por láser de pigmentos en murales secco pintados

  1. María Auxiliadora Gómez-Morón 1
  2. Rocío Ortiz 2
  3. Franceso Colao 3
  4. Roberta Fantoni 3
  5. Javier Becerra Luna 4
  6. Pilar Ortiz 2
  1. 1 nstituto Andaluz del Patrimonio Histórico (IAPH), Seville, Spain
  2. 2 Department Physical, Chemical and Natural Systems, University Pablo de Olavide, Seville, Spain
  3. 3 Fusion and Technology for Nuclear safety and Security. Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA). Frascati, Italy
  4. 4 Universidad Pablo de Olavide
    info

    Universidad Pablo de Olavide

    Sevilla, España

    ROR https://ror.org/02z749649

Revista:
Ge-conservación

ISSN: 1989-8568

Año de publicación: 2020

Número: 17

Páginas: 233-250

Tipo: Artículo

DOI: 10.37558/GEC.V17I1.759 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Ge-conservación

Resumen

La fluorescencia inducida por láser es una técnica de análisis a distancia, aplicada con éxito en tiempo real para el diagnóstico de obras de arte, permitiendo la observación de características invisibles al ojo humano, como rastros de retoques o la presencia de consolidantes modernos. El objetivo de este artículo es generar una base de datos de pigmentos históricos con sus respectivos aglutinantes y consolidantes, realizada para respaldar la identificación remota y el mapeo de estos materiales en un mural de la forma menos invasiva posible. Para este objetivo, se ha utilizado una fuente láser monocromática ultravioleta que emite a 266nm con escaneado remoto en combinación con reflectancia. Se realizaron modelos de pintura mural en técnica a secco de acuerdo con las recetas tradicionales del siglo XVII. Análisis digital de imagen, análisis de componentes principales y mapeado de ángulo espectral ha sido llevado a cabo para obtener los datos de mapeado de dos pigmentos seleccionados, azul esmalte y rojo carmín en una pintura mural real (siglo XVII). Esta técnica no invasiva nos permitió trabajar de manera remota, a una distancia de 11 m de la obra de arte. Los resultados son consecuentes con los microanálisis tradicionales llevados a cabo para identificar pigmentos mayoritarios.

Información de financiación

This study has been supported by the agreements IAPH-UPO & UPOENEA, Jos? Castillejo (2010) and Technoheritage (2013) grants of Pilar Ortiz and the Project of Excellence of Junta de Andalusia HUM-6775 (RIVUPH).

Financiadores

    • HUM-6775

Referencias bibliográficas

  • ACQUAVIVA, S, D’ANNA, E, DE GIORGI, ML, DELLA PATRIA, A & PEZZATI, L. 2008. Optical characterization of pigments by reflectance spectroscopy in support of UV laser cleaning treatments. Applied Physics A. 92(1):223–227.
  • AENOR. 2014. UNE-EN 16085. Conservation of Cultural property. Methodology for sampling from materials of cultural property. General rules.
  • ANGLOS, D, SOLOMIDOU, M, ZERGIOTI, I, ZAFIROPULOS, V, PAPAZOGLOU, TG & FOTAKIS, C. 1996. Laser-Induced Fluorescence in Artwork Diagnostics: An Application in Pigment Analysis. Applied Spectroscopy. 50(10):1331–1334.
  • BORGIA, I, FANTONI, R, FLAMINI, C, DI PALMA, TM, GUIDONI, AG, MELE, A, GIARDINI GUIDONI, A & MELE, A. 1998. Luminescence from pigments and resins for oil paintings induced by laser excitation. Applied Surface Science. 127–129:95–100.
  • BRUNI, S, CARIATI, F, CONSOLANDI, L, GALLI, A, GUGLIELMI, V, LUDWIG, N & MILAZZO, M. 2002. Field and Laboratory Spectroscopic Methods for the Identification of Pigments in a Northern Italian Eleventh Century Fresco Cycle. Applied Spectroscopy. 56(7):827–833.
  • BURRAFATO, G, CALABRESE, M, COSENTINO, A, GUELI, AM, TROJA, SO & ZUCCARELLO, A. 2004. ColoRaman project: Raman and fluorescence spectroscopy of oil, tempera and fresco paint pigments. Journal of Raman Spectroscopy. 35(10):879–886.
  • CANEVE, L, COLAO, F, FIORANI, L & PALUCCI, A. 2010. Patent No. RM2010A000606.
  • CARCAGNÌ, P, DELLA PATRIA, A, FONTANA, R, GRECO, M, MASTROIANNI, M, MATERAZZI, M, PAMPALONI, E & PEZZATI, L. 2007. Multispectral imaging of paintings by optical scanning. Optics and Lasers in Engineering. 45(3):360–367.
  • CARDON, D. 2007. Natural Dyes - Sources, Tradition, Technology and Science. Lon-don, U.K.: Archetype Publications Ltd.
  • CECCHI, G, PANTANI, L, RAIMONDI, V, TOMASELLI, L, LAMENTI, G, TIANO, P & CHIARI, R. 2000. Fluorescence lidar technique for the remote sensing of stone monuments. Journal of Cultural Heritage. 1(1):29–36.
  • CENNINI, C. 1859. Il libro dell’arte, o Trattato della pittura. G. Milanesi. & F. Le Monnier, Eds. Firenze.
  • COLAO, F, FANTONI, R, FIORANI, L & PALUCCI, A. 2007. Patent No. RM2007A000278.
  • COLAO, F, CANEVE, L, FANTONI, R, FIORANI, L, PALUCCI, A, FANTONI, R & FIORANI, L. 2008. Scanning hyperspectral lidar fluorosensor for fresco diagnostics in laboratory and field campaigns. In Lasers in the Conservation of Artworks - Proceedings of the International Conference LACONA 7. CRC Press. 149–155.
  • COMELLI, D, D’ANDREA, C, VALENTINI, G, CUBEDDU, R, COLOMBO, C & TONIOLO, L. 2004. Fluorescence lifetime imaging and spectroscopy as tools for nondestructive analysis of works of art. Applied Optics. 43(10):2175–2183.
  • COMELLI, D, NEVIN, A, VALENTINI, G, OSTICIOLI, I, CASTELLUCCI, EM, TONIOLO, L, GULOTTA, D & CUBEDDU, R. 2011. Insights into Masolino’s wall paintings in Castiglione Olona: Advanced reflectance and fluorescence imaging analysis. Journal of Cultural Heritage. 12(1):11–18.
  • DOMINGO, C, SILVA, D, GARCÍA-RAMOS, J V., CASTILLEJO, M, MARTÍN, M, OUJJA, M, TORRES, R & SÁNCHEZ-CORTÉS, S. 2001. Spectroscopic Analysis of Pigments and Binding Media of Polychromes by the Combination of Optical Laser-Based and Vibrational Techniques. Applied Spectroscopy, Vol. 55, Issue 8, pp. 992-998. 55(8):992–998.
  • EASTAUGH, N, WALSH, V, CHAPLIN, T & SIDDALL, R. 2004. Pigment Compendium: A Dictionary of Historical Pigments - Nicholas Eastaugh, Valentine Walsh, Tracey Chaplin, Ruth Siddall - Google Books. 3th ed. New York: Elsevier Butterworth-Heinemann.
  • FANTONI, R, PALUCCI, A, RIBEZZO, S, BORGIA, I, BACCHI, E, CAPONERO, MA, BORDONE, A, BUSINARO, L, FERRI DE COLLIBUS, M, FORNETTI, GG & POGGI, C. 2000. Laser diagnostics developed for conservation and restoration of cultural inheritance. In SPIE Proceed. Conf. ALT’99. V. 4070. V.I. Pustovoy & V.I. Konov, Eds. Bellingham: V.I. Pustovoy and V.I. Konov Eds. 2–7.
  • FANTONI, R, CANEVE, L, COLAO, F, FIORANI, L, PALUCCI, A, DELL’ERBA, R & FASSINA. 2013. Laser-induced fluorescence study of medieval frescoes by Giusto de’ Menabuoi. Journal of Cultural Heritage. 14(3 SUPPL):S59–S65.
  • FIORANI, L, CANEVE, L, COLAO, F, FANTONI, R, ORTIZ, P, GÓMEZ & MA, VÁZQUEZ. 2010. Real-Time Diagnosis of Historical Artworks by Laser-Induced Fluorescence. Advanced Materials Research. 133–134:253–258.
  • FOTAKIS, C, ANGLOS, D & COURIS, S. 1997. Laser Diagnostics of Painted Artworks: Laser-Induced Breakdown Spectroscopy in Pigment Identification. Applied Spectroscopy, Vol. 51, Issue 7, pp. 1025-1030. 51(7):1025–1030.
  • GIARDINI-GUIDONI, A, VENDITTELLI, M, FLAMINI, C, FANTONI, R, SCIUTI, S & MELE, A. 2000. Experimental comparison of three nondestructive testing diagnostics on pigments and ligands. In Proceedings of the SPIE, Volume 4070, p. 8-17 (2000). V. 4070. V.I. Pustovoy & V.I. Konov, Eds. 8–17.
  • GIROUARD, G, BANNARI, A, HARTI, A EL & DESROCHERS, A. 2004. Validated spectral angle mapper algorithm for geological mapping: comparative study between QuickBird and Landsat-TM. In XXth ISPRS Congress. Istambull. 599–604.
  • GÓMEZ MORÓN, MA. 2008. Analytical report of the paintings of the San Telmo vaults “Informe analítico de las pinturas de las bóvedas de San Telmo”. (Internal report). Sevilla (Spain).
  • ICOMOS. 2003. Principles for the preservation and conservation-restoration of wall paintings. Victoria Falls (Zimbabwe): 14a Asamblea General del ICOMOS.
  • DE LA RIE, ER 1982. Fluorescence of Paint and Varnish Layers (Part III). Studies in Conservation. 27(3):102.
  • LOGNOLI, D, LAMENTI, G, PANTANI, L, TIRELLI, D, TIANO, P & TOMASELLI, L. 2002. Detection and characterization of biodeteriogens on stone cultural heritage by fluorescence lidar. Applied optics. 41(9):1780–7.
  • LOGNOLI, D, CECCHI, G, MOCHI, I, PANTANI, L, RAIMONDI, V, CHIARI, R, JOHANSSON, T, WEIBRING, P, HEDNER, H & SVANBERG, S. 2003. Fluorescence lidar imaging of the cathedral and baptistery of Parma. Applied Physics B: Lasers and Optics. 76(4):457–465.
  • MIYOSHI, T. 1985. Fluorescence from Oil Colours, Linseed Oil and Poppy Oil under N2 Laser Excitation. Japanese Journal of Applied Physics. 24(Part 1, No. 3):371–372.
  • MOUNIER, A, LE BOURDON, G, AUPETIT, C, BELIN, C, SERVANT, L, LAZARE, S, LEFRAIS, Y & DANIEL, F. 2014. Hyperspectral imaging, spectrofluorimetry, FORS and XRF for the non-invasive study of medieval miniatures materials. Heritage Science. 2(1):24.
  • NABAIS, P, MELO, MJ, LOPES, JA, VITORINO, T, NEVES, A & CASTRO, R. 2018. Microspectrofluorimetry and chemometrics for the identification of medieval lake pigments. Heritage Science. 6(1):1–11. https://doi.org/10.1186/s40494-018-0178-1.
  • NEVIN, A & ANGLOS, D. 2006. Assisted Interpretation of Laser-Induced Fluorescence Spectra of Egg-Based Binding Media Using Total Emission Fluorescence Spectroscopy. Laser Chemistry. 2006:1–5.
  • NEVIN, A, CATHER, S, ANGLOS, D & FOTAKIS, C. 2006. Analysis of protein-based binding media found in paintings using laser induced fluorescence spectroscopy. Analytica Chimica Acta. 573–574:341–346.
  • OUJJA, M, VÁZQUEZ-CALVO, C, SANZ, M, DE BUERGO, MÁ, FORT, R & CASTILLEJO, M. 2012. Laser-induced fluorescence and FT-Raman spectroscopy for characterizing patinas on stone substrates. Analytical and Bioanalytical Chemistry. 402(4):1433–1441.
  • PACHECO, F. 1871. The Art of painting “El arte de la pintura”. Revised ed ed. Madrid: Librería de D. León Pablo Villaverde.
  • RAIMONDI, V, ANDREOTTI, A, COLOMBINI, MP, CUCCI, C, CUZMAN, O, GALEOTTI, M, LOGNOLI, D, PALOMBI, L, PICOLLO, M & TIANO, P. 2015. Test measurements on a secco white-lead containing model samples to assess the effects of exposure to low-fluence UV laser radiation. Applied Surface Science. 337:45–57.
  • RASHMI, S, ADDAMANI, S, VENKAT & RAVIKIRAN, S. 2014. Spectal Angle Mapper Algorithm for remote Sensing Image Classification. International Journal of Innovative Science, Engineering & Technology. 1(4):201–205.
  • RENCHER, AC. 2002. Methods of Multivariate Analysis. 2nd ed. New York: Wiley Interscience.
  • SIMONOT, L, THOURY, M & DELANEY, J. 2011. Extension of the Kubelka–Munk theory for fluorescent turbid media to a nonopaque layer on a background. Journal of the Optical Society of America A. 28(7):1349.
  • VERRI, G, CLEMENTI, C, COMELLI, D, CATHER, S & PIQUÉ, F. 2008. Correction of Ultraviolet-Induced Fluorescence Spectra for the Examination of Polychromy. Applied Spectroscopy. 62(12):1295–1302.