Tiempo de recuperación después del ejercicio de fuerza con diferentes magnitudes de carga y pérdida de velocidad en la serie

  1. Fernando Pareja Blanco 1
  2. Antonio Villalba Fernández 1
  3. Pedro J. Cornejo-Daza 1
  4. Juan Sánchez-Valdepeñas 1
  5. Juan José González-Badillo 1
  1. 1 Universidad Pablo de Olavide, Facultad de Ciencias del Deporte
Journal:
RED: Revista de entrenamiento deportivo = Journal of Sports Training

ISSN: 1133-0619

Year of publication: 2019

Tome: 33

Issue: 2

Pages: 21-30

Type: Article

More publications in: RED: Revista de entrenamiento deportivo = Journal of Sports Training

Abstract

The aim of this study was to compare the time course of recovery following four different resistance exercise protocols in terms of loading magnitude (60% vs. 80% 1RM—one-repetition maximum) and velocity loss in the set (20% vs. 40%). Seventeen males performed four different protocols in full squat exercise, which were as follows: (1) 60% 1RM with a velocity loss of 20% (60-20), (2) 60% 1RM with a velocity loss of 40% (60-40), (3) 80% 1RM with a velocity loss of 20% (80-20), and (4) 80% 1RM with a velocity loss of 40% (80-40). Movement velocity against the load that elicited a 1 m•s −1 velocity at baseline measurements (V1-load), countermovement jump (CMJ) height, and sprint time at 20 m (T20) were assessed at Pre, Post, 6 h-Post, 24 h-Post, and 48 h-Post. Impairments in V1-load were significantly higher for 60-40 than other protocols at Post (p < 0.05). The 60-20 and 80-40 protocols exhibited significant performance impairments for V1-load at 6 h-Post and 24 h-Post, respectively (p < 0.05). CMJ height remained decreased for 60-20 and 60-40 until 24 h-Post (p < 0.001–0.05). Regarding T20, the 80-40 protocol resulted in higher performance than 60-40 at 24 h-Post and the 80-20 protocol induced a greater performance than 60-40 protocol at 48 h-Post (p < 0.05). A higher velocity loss during the set (40%) and a lower relative load (60% 1RM) resulted in greater fatigue and slower rate of recovery than lower velocity loss (20%) and higher relative load (80% 1RM).

Bibliographic References

  • 1. Bird, S.P.; Tarpenning, K.M.; Marino, F.E. (2005). Designing resistance training programmes to enhance muscular fitness: A review of the acute programme variables. Sports Med. 2005, 35, 841–851.
  • 2. Fry, A.C. (2004). The role of resistance exercise intensity on muscle fibre adaptations. Sports Med. 2004, 34, 663–679.
  • 3. Sanchez-Medina, L.; Gonzalez-Badillo, J.J. (2011). Velocity loss as an indicator of neuromuscular fatigue during resistance training. Med. Sci. Sports Exerc. 2011, 43, 1725–1734.
  • 4. Gonzalez-Badillo, J.J.; Yanez-Garcia, J.M.; Mora-Custodio, R.; Rodriguez-Rosell, D. (2017). Velocity loss as a variable for monitoring resistance exercise. Int. J. Sports Med.
  • 5. Richens, B.; Cleather, D.J. (2014). The relationship between the number of repetitions performed at given intensities is different in endurance and strength trained athletes. Biol. Sport 2014, 31, 157–161.
  • 6. Gonzalez-Badillo, J.J.; Sanchez-Medina, L. (2010). Movement velocity as a measure of loading intensity in resistance training. Int. J. Sports Med. 2010, 31, 347–352.
  • 7. Pareja-Blanco, F.; Rodriguez-Rosell, D.; Sánchez-Medina, L.; Sanchis-Moysi, J.; Dorado, C.; Mora-Custodio, R.; Yáñez-García, J.M.; Morales-Alamo, D.; Pérez-Suárez, I.; Calbet, J.A.; et al. (2017). Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scand. J. Med. Sci. Sports 2017, 27, 724–735.
  • 8. Sanchez-Medina, L.; Gonzalez-Badillo, J.J.; Perez, C.E.; Pallares, J.G. (2014). Velocity- and power-load relationships of the bench pull vs. bench press exercises. Int. J. Sports Med. 2014, 35, 209–216.
  • 9. Sánchez-Medina, L.; Pallarés, J.G.; Pérez, C.E.; Morán-Navarro, R.; González-Badillo, J.J. (2017). Estimation of relative load from bar velocity in the full back squat exercise. Sports Med. Int. Open 2017, 1, 80–88.
  • 10. Sánchez-Moreno, M.; Rodríguez-Rosell, D.; Pareja-Blanco, F.; Mora-Custodio, R.; González-Badillo, J.J. (2017). Movement velocity as indicator of relative intensity and level of effort attained during the set in pull-up exercise. Int. J. Sports Physiol. Perform. 2017, 12, 1378–1384.
  • 11. Loturco, I.; Pereira, L.A.; Cal Abad, C.C.; Gil, S.; Kitamura, K.; Kobal, R.; Nakamura, F.Y. (2016). Using the bar-velocity to predict the maximum dynamic strength in the half-squat exercise. Int. J. Sports Physiol. Perform.2016, 11, 697–700.
  • 12. Wilk, M.; Golas, A.; Stastny, P.; Nawrocka, M.; Krzysztofik, M.; Zajac, A. (2018). Does tempo of resistance exercise impact training volume? J. Hum. Kinet. 2018, 62, 241–250.
  • 13. Pareja-Blanco, F.; Rodriguez-Rosell, D.; Sanchez-Medina, L.; Ribas-Serna, J.; Lopez-Lopez, C.; Mora-Custodio, R.; Yanez-Garcia, J.M.; Gonzalez-Badillo, J.J. (2017). Acute and delayed response to resistance exercise leading or not leading to muscle failure. Clin. Physiol. Funct. Imaging 2017, 37, 630–639.
  • 14. Gonzalez-Badillo, J.J.; Rodriguez-Rosell, D.; Sanchez-Medina, L.; Ribas, J.; Lopez-Lopez, C.; Mora-Custodio, R.; Yanez-Garcia, J.M.; Pareja-Blanco, F. (2016). Short-term recovery following resistance exercise leading or not to failure. Int. J. Sports Med. 2016, 37, 295–304.
  • 15. Moran-Navarro, R.; Perez, C.E.; Mora-Rodriguez, R.; de la Cruz-Sanchez, E.; Gonzalez-Badillo, J.J.; Sanchez-Medina, L.; Pallares, J.G. (2017). Time course of recovery following resistance training leading or not to failure. Eur. J. Appl. Physiol. 2017, 117, 2387–2399.
  • 16. Pareja-Blanco, F.; Rodriguez-Rosell, D.; Gonzalez-Badillo, J.J. (2019). Time course of recovery from resistance exercise before and after a training program. J. Sports Med. Phys. Fit. 2019.
  • 17. Brandon, R.; Howatson, G.; Strachan, F.; Hunter, A.M. (2015). Neuromuscular response differences to power vs. strength back squat exercise in elite athletes. Scand. J. Med. Sci. Sports 2015, 25, 630–639.
  • 18. Sanchez-Medina, L.; Perez, C.E.; Gonzalez-Badillo, J.J. (2010). Importance of the propulsive phase in strength assessment. Int. J. Sports Med. 2010, 31, 123–129.
  • 19. Gathercole, R.J.; Sporer, B.C.; Stellingwerff, T.; Sleivert, G.G. (2015). Comparison of the capacity of different jump and sprint field tests to detect neuromuscular fatigue. J. Strength Cond. Res. 2015, 29, 2522–2531.
  • 20. Jimenez-Reyes, P.; Pareja-Blanco, F.; Cuadrado-Penafiel, V.; Morcillo, J.A.; Parraga, J.A.; Gonzalez-Badillo, J.J. (2016). Mechanical, metabolic and perceptual response during sprint training. Int. J. Sports Med. 2016, 37, 807–812.
  • 21. Jimenez-Reyes, P.; Pareja-Blanco, F.; Cuadrado-Penafiel, V.; Ortega-Becerra, M.; Parraga, J.; Gonzalez-Badillo, J.J. (2018). Jump height loss as an indicator of fatigue during sprint training. J. Sports Sci. 2018, 1–9.
  • 22. Mitchell, C.J.; Churchward-Venne, T.A.; West, D.W.; Burd, N.A.; Breen, L.; Baker, S.K.; Phillips, S.M. (2012). Resistance exercise load does not determine training-mediated hypertrophic gains in young men. J. Appl. Physiol. 2012, 113, 71–77. 23. Luca, C.J.D. (1997). The use of surface electromyography in biomechanics. J. Appl. Biomech. 1997, 13, 135–163.
  • 24. Adam, A.; De Luca, C.J. (2005). Firing rates of motor units in human vastus lateralis muscle during fatiguing isometric contractions. J. Appl. Physiol. 2005, 99, 268–280.
  • 25. Kraemer, W.J.; Fleck, S.J.; Dziados, J.E.; Harman, E.A.; Marchitelli, L.J.; Gordon, S.E.; Mello, R.; Frykman, P.N.; Koziris, L.P.; Triplett, N.T. (1993). Changes in hormonal concentrations after different heavy-resistance exercise protocols in women. J. Appl. Physiol. 1993, 75, 594–604.
  • 26. Rodriguez-Rosell, D.; Yanez-Garcia, J.M.; Torres-Torrelo, J.; Mora-Custodio, R.; Marques, M.C.; Gonzalez-Badillo, J.J. (2018). Effort index as a novel variable for monitoring the level of effort during resistance exercises. J. Strength Cond. Res. 2018, 32, 2139–2153.