Evaluación de proyectos de inversión de la Banca de Desarrollo, mediante modelos credit scoring destinados a pymes.El caso de la provincia de Pichincha (Ecuador)
- Cerdá Prado, Nelson Alberto
- Marcelo Sánchez-Oro Director
- Antonio Jurado Málaga Co-director
Defence university: Universidad de Extremadura
Fecha de defensa: 17 June 2020
- Juan Carlos Díaz Casero Chair
- Germán Jaraíz Arroyo Secretary
- María de la Cruz del Río Rama Committee member
Type: Thesis
Abstract
La presente tesis, pretende contribuir con un modelo credit scoring que utilice criterios complementarios de evaluación de proyectos de inversión, considerando variables cualitativas, en el ámbito de mercado, ingeniería y financiero, para el proceso de concesión de crédito, en el caso específico de la banca de desarrollo al sector pymes de la provincia de Pichincha (Ecuador). Se trata con ello de aportar una herramienta que busca mitigar el riesgo tanto para la institución financiera como para las pequeñas y medianas empresas. Credit scoring como definición según algunos autores, es la clasificación como buenos o malos pagadores a los potenciales clientes de la banca, sean estos personas naturales o empresas, por otro lado, también se lo define como algoritmos que permiten calificar a clientes, utilizando métodos estadísticos con técnicas paramétricas y no paramétricas para medir el riesgo. Las técnicas paramétricas sustentan su análisis en una función de distribución conocida, estimando criterios que permitan explicar la variable dependiente y las técnicas no paramétricas no requieren información acerca de la función de distribución (redes neuronales, árboles de decisión, algoritmos de búsqueda e inteligencia artificial). El sistema financiero ecuatoriano se encuentra normado por el Código Orgánico Monetario Financiero, las resoluciones vigentes de la Junta Monetaria y se encuentra bajo la supervisión de la Superintendencia de Bancos, el marco normativo señalado contempla actividades relacionadas al riesgo crediticio y a la aplicación de metodologías para su determinación. En el proceso de investigación se analizan estadísticamente 33 variables agrupadas en 5 dimensiones de 315 empresas, lo cual a través del uso de dos técnicas, una no paramétrica (árboles de decisión) y otra paramétrica (logit), se construyó un modelo credit scoring. El modelo credit scoring diseñado, fue validado con resultados favorables, a través de las pruebas: ómnibus por medio del procedimiento de máxima verosimilitud seleccionando las estimaciones de los parámetros que hagan posible que los resultados observados sean adecuados, Hosmer Lemeshow, ajuste global e índice de Negelkerke.