Planificación Forestal con adyacencias bajo criterios múltiples

  1. Hernández Huelin, Mónica 1
  2. Gómez Núñez, Trinidad 1
  3. Molina Luque, Julián 1
  4. León Sánchez, M. Amparo 2
  5. Caballero Fernández, Rafael 1
  1. 1 Departamento de Economía Aplicada(Matemáticas) Universidad de Málaga
  2. 2 Departamento de Matemáticas Universidad de Pinar del Río (Cuba)
Zeitschrift:
Anales de ASEPUMA

ISSN: 2171-892X

Datum der Publikation: 2010

Nummer: 18

Art: Artikel

Andere Publikationen in: Anales de ASEPUMA

Zusammenfassung

In this work, a forest harvesting planning problem is solved via a non linear aspects. We also incorporate spatial constraints aimed at limiting the maximum adjacent area to which clearcutting can be applied. The model proposed is applied to a timber production plantation in Cuba belonging to the forestry company “Empresa Forestal Integral Macurije”, located in the region of Pinar del Río. One factor to be taken into account in Cuban plantations is that the forest has a highly unbalanced age distribution. Therefore, in addition to the classical objectives of forest planning, in this plantation we have the extra goal of rebalancing age distribution by the end of the planning horizon. The problem is solved by applying a metaheuristic method based on Scatter Search called SSPMO.

Bibliographische Referenzen

  • Bare, B., Mendoza, G. (1988). “Multiple objective forest 1, management planning: An illustration”. European Journal of Operational Research, 34: pp. 44-55.
  • Bateman, I. J., Lovett, A.A. (2000). “Estimating and valuing the carbón sequestered in softwood and hardwood trees, timber products and forest soils in Wales”. Journal of Environmental Management, 60, pp. 301-323.
  • Bobko, A. Aldana, E. (1981). “Ordenación de Montes”. Centro Universitario de Pinar del Río. Cuba.
  • Borges, J.G., Hoganson, H.M., Falcão, A.O. (2002). “Heuristics in multiobjective forest planning”. In Pukkala, T. (ed) Multi-objective forest planning, Kluwer Academic Publishers, Boston.
  • Caro, F., Constantino, M., Martins, I., Weintraub, A. (2003). “A 2-opt tabu search procedure for the multiperiod forest harvesting problem with adjacency, green-up, old growth, and even flow constraints”. Forest Sci., 49, pp. 738-751.
  • Coello, C., Van Veldhuizen, D. A., Lamont, G. B. (2007). Evolutionary Algorithms for Solving Multi-Objective Problems. Second Edition, Kluwer Academic Publishers, Boston.
  • Díaz Balteiro, L., Romero, C. (1998). “Modelling timber harvest scheduling problems with multiple criteria: an application in Spain”. Forest Sci., 44, pp. 47-57.
  • Díaz Balteiro, L., Romero, C. (2003). “Forest management optimisation models when carbon captured is considered: a goal programming approach”. Forest Ecology and Management, 174, pp. 447-457.
  • Diaz Balteiro, L., Romero, C (2008). “Making forestry decisions with multiple criteria: a review and an assessment. Forest Ecol Manage, 225, pp. 3222-3241.
  • Falcão, A., Borges, J. (2002). “Combining random and systematic search heuristic procedures for solving spatially constrained forest management scheduling models”. Forest Sci., 48, pp. 608-621.
  • Field, R., Dress, P. E., Fortson, J. C. (1980). “Complementary Linear and Goal Programming procedures for timber harvest scheduling”. Forest Sci., 26, pp. 121-133.
  • Glover, F., Laguna, M.; Martí, R. (2000). “Fundamentals of Scatter Search and Path Relinking”. Control and Cybernetics, 39, pp. 653-684.
  • Goycoolea, M., Murray, A.T., Barahona, F., Epstein, R., Weintraub, A. (2005) “Harvest scheduling subject to maximum área restrictions: exploring exact approaches”. Oper. Res., 53, pp. 490-500.
  • Gómez, T., Hernández, M., León, M.A., Caballero, R. (2006). "A Forest Planning Problem Solved via a Linear Fraccional Goal Programming Model". Forest Ecology and management, 227, pp.79-88.
  • Hoen, H.F.; Solberg, B. (1994). Potential and economic efficiency of carbón sequestration in forest biomass through silvicultural management. Forest Science, 40, pp. 429-451.
  • Hotvedt, J.E. (1983). “Application of linear goal programming to forest harvest scheduling”. Southern Journal of Agricultural Economics, 15, pp. 103-108.
  • Kao, C., Brodie, J. D. (1979). “Goal programming for reconciling economic, even flow, and regulation objectives in forest harvest scheduling”. Canadian Journal of Forest Research, 9, pp. 525-531.
  • Kazana, V., Fawcett, R.H., Mutch, W.E.S., (2003). “A decision support modelling framework for multiple use forest management: The Queen Elizabeth Forest case study in Scotland”. European Journal of Operational Research, 148, pp. 102-115.
  • Liu, G., Han, S., Zhao, X., Nelson, J.D., Wang, H., Wang, W. (2006). “Optimisation algorithms for spatially constrained forest planning”. Ecol Model., 194, pp. 421-428.
  • McDill, M.E., Rebain, S.A., Braze, J. (2002) “Harvest scheduling with areabased adjacency constraints”. Forest Sci., 48, pp. 631-642.
  • Mendoza, G.A.; Martins, H. (2006). “Multi-criteria decision analysis in natural resource management: a critical review of methods and new modelling paradigms”. Forest Ecology and Management, 230, pp. 1-22.
  • Molina, J., Laguna, M., Marti, R., Caballero, R. (2007). “SSPMO: A scatter tabu search procedure for non-linear multiobjective optimization”, JOC., 19, 1, pp. 91-100.
  • Murray, A.T. (1999). “Spatial restrictions in harvest scheduling”. Forest Sci., 45, pp. 1-8
  • Murray, A.T., Weintraub, A. (2002). “Scale and unit specification influences in harvest scheduling with maximum area restrictions”. Forest Sci., 48, pp. 779-789.
  • Platinga, A. J., Mauldin, T., MILLER, J. (1999). “ An econometric analysis of the costs of sequestering carbon in forest”.
  • Pukkala, T., Heinonen, T. (2006). “Optimizing heuristic search in forest planning”. Nonlinear Anal., 7, pp. 1284-1297.
  • Roise, J.P. (1990). “Multicriteria nonlinear programming for optimal spatial allocation of stands. Forest Sci., 36, pp. 487-501.
  • Snyder, S., Revelle, C. (1997). “ Multiobjective grid packing model: an application in forest management”. Location Science, 5, pp. 165-180.
  • Steuer, R. E., Schuler, A. T. (1978). “A interactive multiple objective linear programming approach to a problem in forest management”. Operations Research, 26, pp. 254-269.
  • Tóth, S.F., McDill, M.E., Rebain, S. (2006). “ Finding the efficient frontier of a bi-criteria, spatially explicit, harvest scheduling problem”. Forest Sci., 52, pp. 93-107.
  • Tóth, S.F., McDill, M.E. (2008). “ Finding efficient harvest schedules under three conflicting objectives”. Forest Sci., 55, pp. 117-131.
  • Weintraub, A., Murray, A.T. (2006). “Review of combinatorial problems induced by spatial forest harvesting planning”. Discret Appl Math, 154, pp. 867-879.