Biosíntesis de Quantum Dots

  1. Rafael Hoyos Manchado
Revista:
MoleQla: revista de Ciencias de la Universidad Pablo de Olavide

ISSN: 2173-0903

Año de publicación: 2016

Número: 21

Tipo: Artículo

Otras publicaciones en: MoleQla: revista de Ciencias de la Universidad Pablo de Olavide

Resumen

Los Quantum Dots son nanopartículas con propiedades ópticas muy singulares, por lo que se usan en multitud de aplicaciones biomédicas o biológicas. Uno de los tipos más importantes son los calcogenuros, especialmente los de cadmio. Aunque existen otros métodos de síntesis, se ha estudiado la posibilidad de producir estas nanopartículas de forma biológica aprovechando los mecanismos de destoxificación de metales pesados que muchos organismos poseen de forma natural. La levadura de fisión, Schizossaccharomyces pombe fue el modelo pionero con este propósito pero, a lo largo de los años, se han logrado sintetizar estas nanopartículas en diversos microorganismos

Referencias bibliográficas

  • S. Mussa Farkhani and A. Valizadeh, “Review: three synthesis methods of CdX (X = Se, S or Te) quantum dots.,” IET nanobiotechnology, vol. 8, no. 2, pp. 59–76, Jun. 2014.
  • N. Chen, Y. He, Y. Su, X. Li, Q. Huang, H. Wang, X. Zhang, R. Tai, and C. Fan, “The cytotoxicity of cadmium-based quantum dots,” Biomaterials, vol. 33, no. 5, pp. 1238–1244, Mar. 2012.
  • A. Murasugi, A. Colony, and Y. Hayashi, “CadmiumBinding Peptide Induced in Fission Yeast , Schizosaccharomyces pombe,” J. Biochem., vol. 90, no. 5, pp. 1561–1564, 1981.
  • N. Kondo, M. Isobe, T. Goto, A. Murasugi, and Y. Hayashi, “Structure of cadystin, the unit-peptide of cadmiumbinding peptides induced in fission yeast, Schizosaccharomyces pombe,” Tetrahedron Lett., vol. 24, no. 9, pp. 925–928, 1983.
  • E. Grill, E. L. Winnacker, and M. H. Zenk, “Phytochelatins: the principal heavy-metal complexing peptides of higher plants.,” Science, vol. 230, no. 4726, pp. 674–676, Nov. 1985.
  • E. Grill, S. Loffler, E. L. Winnacker, and M. H. Zenk, “Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific gamma-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase).,” Proc. Natl. Acad. Sci. U. S. A., vol. 86, no. 18, pp. 6838–6842, Sep. 1989.
  • Y. Hayashi, C. W. Nakagawa, N. Mutoh, M. Isobe, and T. Goto, “Two pathways in the biosynthesis of cadystins (γEC)nG in the cell-free system of the fission yeast,” Biochem. Cell Biol., vol. 69, no. 2–3, pp. 115–121, Feb. 1991.
  • S. Clemens, E. J. Kim, D. Neumann, and J. I. Schroeder, “Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast,” EMBO J., vol. 18, no. 12, pp. 3325–3333, 1999.
  • R. N. Reese and D. R. Winge, “Sulfide Stabilization of the Cadmium-y-Glutamyl Peptide Complex of Schixosaccharomyces pombe ”,” J. Biol. Chem., vol. 263, no. 26, pp. 12832–12835, 1988.
  • C. T. Dameron and D. R. Winge, “Peptide-mediated formation of quantum semiconductors,” TIBTECH, vol. 8, pp. 3–6, 1990.
  • R. Rossetti, S. Nakahara, and L. E. Brus, “Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution,” J. Chem. Phys., vol. 79, no. 2, pp. 1086–1088, 1983.
  • C. T. Dameron, R. N. Reeses, R. K. Mehra, A. R. Kortan, P. J. Carrol, M. L. Steigerwald, L. E. Brus, and D. R. Winge, “Biosynthesis of cadmium sulphide quantum semiconductor crystallites,” Nature, vol. 338, pp. 596–597, 1989.
  • P. Williams, E. Keshavarz-Moore, and P. Dunnill, “Efficient production of microbially synthesized cadmium sulfide quantum semiconductor crystallites,” Enzyme Microb. Technol., vol. 19, no. 3, pp. 208–213, 1996.
  • P. Williams, E. Keshavarz-Moore, and P. Dunnill, “Production of cadmium sulphide microcrystallites in batch cultivation by Schizosaccharomyces pombe,” J. Biotechnol., vol. 48, no. 3, pp. 259–267, 1996.
  • P. Williams, E. Keshavarz-Moore, and P. Dunnill, “Schizosaccharomyces pombe fed-batch culture in the presence of cadmium for the production of cadmium sulphide quantum semiconductor dots,” Enzyme Microb. Technol., vol. 30, no. 3, pp. 354–362, 2002.
  • N. Krumov, S. Oder, I. Perner-Nochta, A. Angelov, and C. Posten, “Accumulation of CdS nanoparticles by yeasts in a fed-batch bioprocess.,” J. Biotechnol., vol. 132, no. 4, pp. 481– 6, Dec. 2007.
  • H. Huang, M. He, W. Wang, J. Liu, C. Mi, and S. Xu, “Biosynthesis of CdS quantum dots in Saccharomyces cerevisiae and spectroscopic characterization.,” Guang Pu Xue Yu Guang Pu Fen Xi, vol. 32, no. 4, pp. 1090–1093, Apr. 2012.
  • H. Bao, N. Hao, Y. Yang, and D. Zhao, “Biosynthesis of biocompatible cadmium telluride quantum dots using yeast cells,” Nano Res., vol. 3, no. 7, pp. 481–489, 2010.
  • A. Ahmad, P. Mukherjee, D. Mandal, S. Senapati, M. I. Khan, R. Kumar, and M. Sastry, “Enzyme Mediated Extracellular Synthesis of CdS Nanoparticles by the Fungus, Fusarium oxysporum,” J. Am. Chem. Soc., vol. 124, no. 41, pp. 12108–12109, Oct. 2002.
  • S. A. Kumar, A. A. Ansary, A. Ahmad, and M. I. Khan, “Extracellular Biosynthesis of CdSe Quantum Dots by the Fungus, Fusarium Oxysporum,” J. Biomed. Nanotechnology, vol. 3, no. 2, pp. 190–194, 2007.
  • R. Y. Sweeney, C. Mao, X. Gao, J. L. Burt, A. M. Belcher, G. Georgiou, and B. L. Iverson, “Bacterial Biosynthesis of Cadmium Sulfide Nanocrystals,” Chem. Biol., vol. 11, pp. 1553–1559, 2004.
  • Z. Yan, J. Qian, Y. Gu, Y. Su, X. Ai, and S. Wu, “Green biosynthesis of biocompatible CdSe quantum dots in living Escherichia coli cells,” Mater. Res. Express, vol. 1, no. 1, p. 015401, Mar. 2014.
  • H. Bao, Z. Lu, X. Cui, Y. Qiao, J. Guo, J. M. Anderson, and C. M. Li, “Extracellular microbial synthesis of biocompatible CdTe quantum dots,” Acta Biomater., vol. 6, no. 9, pp. 3534–3541, Sep. 2010.
  • H. J. Bai, Z. M. Zhang, Y. Guo, and G. E. Yang, “Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris,” Colloids Surfaces B Biointerfaces, vol. 70, no. 1, pp. 142–146, Apr. 2009.
  • D. P. Cunningham and L. L. Lundie, “Precipitation of cadmium by Clostridium thermoaceticum,” Appl. Environ. Microbiol., vol. 59, no. 1, pp. 7–14, 1993.
  • J. D. Holmes, D. J. Richardson, S. Saed, R. Evans-, D. A. Russell, and J. R. Sodeaul, “Cadmium-specif ic formation of metal sulfide ’Q-particles ' by Klebsiella pneumoniae,” Microbiology, vol. 143, pp. 2521–2530, 1997.
  • H. Aiking, H. Govers, and J. van ’t Riet, “Detoxification of mercury, cadmium, and lead in Klebsiella aerogenes NCTC 418 growing in continuous culture.,” Appl. Environ. Microbiol., vol. 50, no. 5, pp. 1262–1267, Nov. 1985.
  • X. Li, S. Chen, W. Hu, S. Shi, W. Shen, X. Zhang, and H. Wang, “In situ synthesis of CdS nanoparticles on bacterial cellulose nanofibers,” Carbohydr. Polym., vol. 76, no. 4, pp. 509–512, 2009.
  • M. N. Borovaya, A. P. Naumenko, N. A. Matvieieva, Y. B. Blume, and A. I. Yemets, “Biosynthesis of luminescent CdS quantum dots using plant hairy root culture,” Nanoscale Res. Lett., vol. 9, no. 1, pp. 1–7, 2014.
  • C. Gallardo, J. P. Monras, D. O. Plaza, B. Collao, L. A. Saona, V. Duran-Toro, F. A. Venegas, C. Soto, G. Ulloa, C. C. Vasquez, D. Bravo, and J. M. Perez-Donoso, “Lowtemperature biosynthesis of fluorescent semiconductor nanoparticles (CdS) by oxidative stress resistant Antarctic bacteria.,” J. Biotechnol., vol. 187, pp. 108–115, Oct. 2014.
  • S. R., HocknerM., PanneerselvamA., LevittJ., BouillardJ-S., TaniguchiS., DaileyL-A., R. A. Khanbeigi, R. V., ThanouM., SuhlingK., Z. V., and GreenM., “Biosynthesis of luminescent quantum dots in an earthworm,” Nat Nano, vol. 8, no. 1, pp. 57–60, Jan. 2013