A 4+1 architecture for in vivo electrophysiology visual prosthesis

  1. Alejandro Barriga-Rivera
  2. Calvin D. Eiber
  3. Paul, B. Matteucci
  4. Spencer C. Chen
  5. John W. Morley
  6. Nigel H. Lovell
  7. Gregg J. Suaning
Journal of accessibility and design for all: JACCES

ISSN: 2013-7087

Year of publication: 2016

Volume: 6

Issue: 2

Pages: 81-101

Type: Article

More publications in: Journal of accessibility and design for all: JACCES


SCImago Journal Rank

  • Year 2016
  • SJR Journal Impact: 0.103
  • Best Quartile: Q3
  • Area: Architecture Quartile: Q3 Rank in area: 126/174
  • Area: Building and Construction Quartile: Q4 Rank in area: 312/373
  • Area: Human Factors and Ergonomics Quartile: Q4 Rank in area: 51/62

Índice Dialnet de Revistas

  • Year 2016
  • Journal Impact: 0.040
  • Field: ARQUITECTURA Quartile: C2 Rank in field: 11/38


  • Social Sciences: B

Scopus CiteScore

  • Year 2016
  • CiteScore of the Journal : 0.2
  • Area: Architecture Percentile: 33
  • Area: Building and Construction Percentile: 11
  • Area: Human Factors and Ergonomics Percentile: 4


Researchers around the globe are working towards restoring vision to the blind through the development of a visual neuroprosthesis. Overcoming physical, technical and biological limitations represents one of the main challenges for the scientific community and will eventually benefit the wellbeing of the recipients of these devices. Thus, understanding the physiological mechanisms of prosthetic vision plays a key role. In this context, in vivo electrophysiological studies are aiming to shed light on new stimulation paradigms that can potentially lead to improved visual perception. This paper describes a multi-viewpoint architecture of an experimental setup for the investigation of electrically evoked potentials in a retinal neuroprosthesis.

Funding information

Supported by the National Health and Medical Research Council NHMRC (RG1063046)


    • RG1063046

Bibliographic References

  • Barriga-Rivera, A., Eiber C.D., Doods C.W.D., D., Fung A., Tatarinoff V., Lovel N.H. & Suaning, GJ. (2015). Electrically Evoked Potentials in an Ovine Model for the Evaluation of Visual Prosthesis Efficacy. Paper presented at the Engineering in Medicine and Biology Society (EMBC), 2015 Annual International Conference of the IEEE, Milan. DOI: 10.1109/EMBC.2015.7319112.
  • Brindley, G. S., & Lewin, W. (1968). The sensations produced by electrical stimulation of the visual cortex. The Journal of Physiology, 196(2), 479-493.
  • Dodds, C., Schuettler, M., Guenther, T., Lovell, N., & Suaning, G. (2011). Advancements in electrode design and laser techniques for fabricating micro-electrode arrays as part of a retinal prosthesis. Paper presented at the Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE.
  • Dumm, G., Fallon, J. B., Williams, C. E., & Shivdasani, M. N. (2014). Virtual Electrodes by Current Steering in Retinal Prostheses. Investigative ophthalmology & visual science, 55(12), 8077-8085.
  • Eiber, C. D., Lovell, N. H., & Suaning, G. J. (2013). Attaining higher resolution visual prosthetics: a review of the factors and limitations. Journal of neural engineering, 10(1), 011002.
  • Fallon, J. B., Shepherd, R. K., & Irvine, D. R. (2014). Effects of chronic cochlear electrical stimulation after an extended period of profound deafness on primary auditory cortex organization in cats. European Journal of Neuroscience, 39(5), 811-820.
  • Fambrini, F., Barreto, M. A., & Saito, J. H. (2014). Low noise microelectrode array signal headstage pre-amplifier for in-vitro neuron culture. Paper presented at the Computer-Based Medical Systems (CBMS), 2014 IEEE 27th International Symposium on.
  • Green, R., Matteucci, P., Dodds, C., et al. (2014). Laser patterning of platinum electrodes for safe neurostimulation. Journal of neural engineering, 11(5), 056017.
  • Habib, A. G., Cameron, M. A., Suaning, G. J., Lovell, N. H., & Morley, J. W. (2013). Spatially restricted electrical activation of retinal ganglion cells in the rabbit retina by hexapolar electrode return configuration. Journal of neural engineering, 10(3), 036013.
  • Houzé, B., Bradley, C., Magnin, M., & Garcia-Larrea, L. (2013). Changes in sensory hand representation and pain thresholds induced by motor cortex stimulation in humans. Cerebral Cortex, 23(11), 2667-2676.
  • Jung, L. H., Shany, N., Emperle, A., Lehmann, T., Byrnes-Preston, P., Lovell, N. H., & Suaning, G. J. (2013). Design of Safe Two-Wire Interface-Driven Chip-Scale Neurostimulator for Visual Prosthesis. Solid-State Circuits, IEEE Journal of, 48(9), 2217-2229.
  • Kruchten, P. B. (1995). The 4+ 1 view model of architecture. Software, IEEE, 12(6), 42-50.
  • Limousin, P., Krack, P., Pollak, P., Benazzouz, A., Ardouin, C., Hoffmann, D., & Benabid, A.-L. (1998). Electrical stimulation of the subthalamic nucleus in advanced Parkinson's disease. New England Journal of Medicine, 339(16), 1105-1111.
  • Matteucci, P. B., Chen, S. C., Tsai, D., el al. (2013). Current steering in retinal stimulation via a quasimonopolar stimulation paradigm. Investigative ophthalmology & visual science, 54(6), 4307-4320.
  • Pascolini, D., & Mariotti, S. P. (2011). Global estimates of visual impairment: 2010. British Journal of Ophthalmology, bjophthalmol-2011-300539.
  • Rosen, H. R., Urbarz, C., Holzer, B., Novi, G., & Schiessel, R. (2001). Sacral nerve stimulation as a treatment for fecal incontinence. Gastroenterology, 121(3), 536-541.
  • Schuettler, M., Stiess, S., King, B., & Suaning, G. (2005). Fabrication of implantable microelectrode arrays by laser cutting of silicone rubber and platinum foil. Journal of neural engineering, 2(1), S121.
  • Shepherd, R. K., Shivdasani, M. N., Nayagam, D. A., Williams, C. E., & Blamey, P. J. (2013). Visual prostheses for the blind. Trends in biotechnology, 31(10), 562-571.
  • Snyder, R. L., Middlebrooks, J. C., & Bonham, B. H. (2008). Cochlear implant electrode configuration effects on activation threshold and tonotopic selectivity. Hearing research, 235(1), 23-38.
  • Stronks, H. C., Barry, M. P., & Dagnelie, G. (2013). Electrically elicited visual evoked potentials in Argus II retinal implant wearers. Investigative ophthalmology & visual science, 54(6), 3891.
  • Suaning, G., Lovell, N., & Lehmann, T. (2014). Neuromodulation of the retina from the suprachoroidal space: The Phoenix 99 implant. Paper presented at the Biomedical Circuits and Systems Conference (BioCAS), 2014 IEEE.
  • Suaning, G. J., Lovell, N. H., & Kerdraon, Y. A. (2001). Physiological response in ovis aries resulting from electrical stimuli delivered by an implantable vision prosthesis. Paper presented at the Engineering in Medicine and Biology Society, 2001. Proceedings of the 23rd Annual International Conference of the IEEE.
  • Wong, Y. T., Dommel, N., Preston, P., Hallum, L. E., Lehmann, T., Lovell, N. H., & Suaning, G. J. (2007). Retinal neurostimulator for a multifocal vision prosthesis. Neural Systems and Rehabilitation Engineering, IEEE Transactions on, 15(3), 425-434.