Efecto del envejecimiento sobre la capacidad reproductiva de Quercus suber en bosques maduros de espacios protegidos

  1. Marta Pardos 1
  2. Guillermo Madrigal 1
  3. Juan J. Robledo 2
  4. José Climent 2
  5. Ricardo Alía 2
  6. Fernando Montes 3
  7. J. Julio Camarero 4
  8. Álvaro Rubio-Cuadrado 5
  9. Rafael Calama 1
  1. 1 Departamento de Dinámica y Gestión Forestal, INIA-CIFOR, iuFOR
  2. 2 Departamento de Ecología y Genética Forestal, INIA-CIFOR, iuFOR
  3. 3 INIA-CIFOR, iuFOR
  4. 4 Instituto Pirenaico de Ecología (IPE-CSIC)
  5. 5 Departamento de Sistemas y Recursos Naturales, Escuela Técnica Superior de Ingeniería de Montes,Forestal y del Medio Natural, Universidad Politécnica de Madrid
Journal:
Cuadernos de la Sociedad Española de Ciencias Forestales

ISSN: 1575-2410 2386-8368

Year of publication: 2019

Issue: 45

Pages: 19-36

Type: Article

More publications in: Cuadernos de la Sociedad Española de Ciencias Forestales

Abstract

Seed availability and viability are key processes for the persistence of mature forests. There are evidences that tree senescence does not decrease seed fecundity. However, the effect of senescence on the viability of the progeny in mature forests has not been assessed. This study analyses the influence of tree age on biometric traits of the acorn, germination and emergence in mature forests of Quercus suberin Cabañeros and Monfragüe National Parks. We selected 45 to 48 trees in each National Park (NP), covering from young to old trees along the range of diameter at breast height (DBH) found (from 24 to 100 cm in Cabañeros NP, and from 24 to 176 cm in Monfragüe NP). Measurements included coordinates, DBH, height and two perpendicular crown diameters. Tree age was estimated at 1.3 m by extracting cores. In December 2018 seeds were collected from the selected trees. The yield was not abundant due to the marked masting year. After numbering the acorns individually, different biometric traits were measured (fresh weight, diameter, volume and length), and the effect of tree age was analysed, considering DBH as a proxy of tree age. Acorns were seeded to monitor germination and emergence. The results show the effect of site, tree age and acorn size on seed production, biometric traits, germination and emergence. Acorn size varied with parental trees and within a tree. The low yield in 2018 could in part mask the results.

Bibliographic References

  • Aizen, M.A., Patterson, W.A., 1990. Acorn size and geographical range in the North American oaks (Quercus L.) J Biogr 17, 327-332. https://doi.org/10.2307/2845128
  • Aizen, M.A., Woodcock, H., 1992. Latitudinal trends in acorn size in eastern North American species of Quercus. Can. J. Bot. 70, 1218-1222. https://doi.org/10.1139/b92-153
  • Alejano, R., Domínguez-Delmas, M., García-González I., Wazny, T., Vázquez-Piqué, J., Fernández-Martínez, M., 2019. The age of black pine (Pinus nigra Arn. ssp. salzmanni (Dunal) Franco) mother trees has no effect on seed germination and on offspring seedling performance. Ann. For. Sci. 76, 15. https://doi.org/10.1007/s13595-019-0801-7
  • Andrew, W. Bartlow, A.W., Agosta, S.J., Curtis, R., Yi, X., Steele, M.A., 2018. Acorn size and tolerance to seed predators: the multiple roles of acorns as food for seed predators, fruit for dispersal and fuel for growth. Integrative Zoology 13, 251-266. https://doi.org/10.1111/1749-4877.12287
  • Aranda, I., Pardos, M., Puértolas, J., Jiménez, M.D., Parods, J.A., 2007. Water-use efficiency in cork oak (Quercus usber) is modified by the interaction of water and light availabilities. Tree Physiol 27, 671-677. https://doi.org/10.1093/treephys/27.5.671
  • Bartlow, A.W., Agosta, S., Curtis, R., Yi, X., Steele, M.A., 2018. Acorn size and tolerance to seed predators: the multiple roles of acorns as food for seed predators, fruit for dispersal and fuel for growth. Integrative Zoology 13, 251-266. https://doi.org/10.1111/1749-4877.12287
  • Calama, R., Manso, R., Lucas-Borja, M.E., Espelta, J.M., Piqué, M., Bravo, F., del Peso, C., Pardos, M., 2017. Natural regeneration in Iberian pines: a review of dynamic processes and proposals for management. For. Syst. 26(2). https://doi.org/10.5424/fs/2017262-11255
  • Carey, E.V., Sala, A., Keane, M., Callaway. R.M. 2001. Are old forests underestimated as global carbon sinks? Glob. Change Biol. 7, 339-344. https://doi.org/10.1046/j.1365-2486.2001.00418.x
  • Franklin, J.F., Spies, T.A., 1991. Ecological definitions of old-growth Douglas-fir forests. In: Wildlife and Vegetation of Unmanaged Douglas-Fir Forests. Report PNW-GTR-285, Portland, USDA, For. Serv., 61-69.
  • Frelich, L.E., Reich, P.B., 2003. Perspectives on development of definitions and values related to old-growth forests. Environmental Reviews 11: S9-S22. https://doi.org/10.1139/a03-011
  • García‐Nogales, A., Linares, J.C., Laureano, R.G., Seco, J.I., Merino, J., 2016. Range‐wide variation in life‐history phenotypes: spatiotemporal plasticity across the latitudinal gradient of the evergreen oak Quercus ilex. J. Biogeog. 43, 2366-2379. https://doi.org/10.1111/jbi.12849
  • Gómez, J.M., 2004. Bigger is not always better: conflicting selective pressures on seed size in Quercus ilex. Evolution 58, 71-80. https://doi.org/10.1111/j.0014-3820.2004.tb01574.x
  • Grove, AT., Rackham, O., 2001. The Nature of Mediterranean Europe: An Ecological History. Yale University Press, New Haven & London.
  • Lawless, JF. 2003. Statitical models and methods for lifetime data. John Wiley & Sons inc. Hoboken. https://doi.org/10.1002/9781118033005
  • Lindenmayer, D.B., Franklin, J.F., 2002. Congruence between natural and human forest disturbance: a case study for Australian montane ash forest. For. Ecol. Managem. 155, 319-335. https://doi.org/10.1016/S0378-1127(01)00569-2
  • Long, T.J., Jones, R.H., 1996. Seedling growth strategies and seed size effects in fourteen oak species native to different soil moisture habitats. Trees 11, 1-8. https://doi.org/10.1007/s004680050051
  • Lucas-Borja, M.E., Candel-Pérez, D., Onkelinx, T., Fule, P.Z., Moya, D., Gómez, R., de las Heras, J., 2017. Early Mediterranean pine recruitment in burned and unburned Pinus nigra Arn. ssp salzmannii stands of Central Spain: influence of species identity, provenances and post-dispersal predation. For. Ecol. Manag. 390, 203-211. https://doi.org/10.1016/j.foreco.2017.01.026
  • Marcelo, A., Aizen, M.A., Patterson W.A., III, 1990. Acorn size and geographical range in the North American oaks (Quercus L.). J. Biogeogr. 17, 327-332. https://doi.org/10.2307/2845128
  • McCullagh, P., Nelder, J.A. (1989) Generalized Linear Models. 2nd Edition, Chapman and Hall, London. https://doi.org/10.1007/978-1-4899-3242-6
  • Merouani, H., Branco, C., Almeida, M.H., Pereira, J.S., 2001. Effects of acorn storage duration and parental tree on emergence and physiological status of Cork oak (Quercus suber L.) seedlings. Ann. For. Sci. 58, 543-554. https://doi.org/10.1051/forest:2001144
  • Moles, A.T., Leishman, M.R., 2008. The seedling as part of a plant's life history strategy. En: Seedling Ecology and Evolution (ed. M.A. Leck, V.T. Parker, R.L. Simpson), 217-238. https://doi.org/10.1017/CBO9780511815133.012
  • Montero, G., Cañellas, I., 1999. Manual de reforestación y cultivo de alcornoque (Quercus suber L.). Mº de Agricultura, Pesca y Alimentación. INIA, 103 p.
  • Mukassabi, T.A., Polwart, A.., Coleshaw, T., Thomas, P.A., 2012. Scots pine seed dynamics on a waterlogged site. Trees 26: 1305-1315. https://doi.org/10.1007/s00468-012-0706-7
  • Nadrowski, K., Wirth, C., Scherer-Lorenzen, M., 2010. Is forest diversity driving ecosystem function and service? Current Opinion in Environmental Sustainability 524, 75-79. https://doi.org/10.1016/j.cosust.2010.02.003
  • Oliver, C.D., Larson, B.C., 1990. Forest stand dynamics. Biological resource management series. Mc Graw-Hill, USA
  • Peterken, G.F., 1996. Natural woodland: ecology and conservation in northern temperate regions. Cambridge University Press
  • Petit, R., Hampe, A. 2006. Some evolutionary consequences of being a tree. Ann Rev Ecology, Evol and Systematics 37, 187-214. https://doi.org/10.1146/annurev.ecolsys.37.091305.110215
  • Pillsbury, N.H., Mc Donald, P.M.1990. Reliability of tanoak volume equations when applied to different areas, West. J. App. For. 10: 72-78. https://doi.org/10.1093/wjaf/10.2.72
  • Pons, J., Pausas, J.G. 2012. The coexistence of acorns with different maturation patterns explains acorn production variability in cork oak. Oecologia 169: 723-731. https://doi.org/10.1007/s00442-011-2244-1
  • Pukkala, T., Kolström, T., 1992. A stochastic spatial regeneration model for Pinus sylvestris. Scand. J. For. Res. 7, 377-385. https://doi.org/10.1080/02827589209382730
  • Sánchez-Montes de Oca, E.J., Badano, E.I., Silva-Alvarado, L.E., Flores, J., Barragán-Torres, F., Flores-Cano, J.A., 2018. Acorn weight as determinant of germination in red and white oaks: evidences from a common-garden greenhouse experiment. Ann. For. Sci. 75, 12. https://doi.org/10.1007/s13595-018-0693-y
  • Shi, W., Villar-Salvador, P., Li, G., Jiang, X., 2019. Acorn size is more important than nursery fertilization for outplanting performance of Quercus variabilis container seedlings. Ann. For. Sci. 76, 22. https://doi.org/10.1007/s13595-018-0785-8
  • Smith, C.C., Fretwell, S.D., 1974. The optimal balance between size and number of offspring. The American Naturalist 109, 499-506. https://doi.org/10.1086/282929
  • Torres, M., Frutos, G., 1989. Analysis of germination curves of aged fennel seeds by mathematical models. Environ Exp Bot 29(3), 409-415. https://doi.org/10.1016/0098-8472(89)90016-6
  • Vieira Natividade, J., 1991. Subericultura. Mº de Agricultura, Pesca y Alimentación, 448p
  • Westoby, M., Jurado, J., Leishman, M., 1992. Comparative evolutionary ecology of seed size. Trends Ecol. Evol. 7, 368-372. https://doi.org/10.1016/0169-5347(92)90006-W
  • Wirth, C., Messier, C., Bergeron, Y., Frank, D., Fankhänel, A., 2009. Old-Growth Forest Definitions: a Pragmatic View. En: Wirth Christian et al., ed. Old-Growth Forests. Berlin Heidelberg: Springer Verlag, 11-33. https://doi.org/10.1007/978-3-540-92706-8_2
  • Xiao, Z., Zhang, Z., Wang, Y., 2004. Dispersal and germination of big and small nuts of Quercus serrata in a subtropical broad-leaved evergreen forest. For. Ecol. Manage. 195, 141-150. https://doi.org/10.1016/j.foreco.2004.02.041
  • Yi, X., Zhang, J., Wang, Z., 2015. Large and small acorns contribute equally to early-stage oak seedlings: a multiple species study. Eur. J. For. Res. 134, 1019-1026. https://doi.org/10.1007/s10342-015-0906-y