El componente social de la amenaza híbrida y su detección con modelos bayesianos
- Ruiz-Ruano, Ana-María 1
- López-Puga, Jorge 1
- Delgado-Morán, Juan-Jose 1
-
1
Universidad Católica San Antonio
info
ISSN: 1390-4299
Año de publicación: 2019
Número: 25
Páginas: 57-69
Tipo: Artículo
Otras publicaciones en: URVIO: Revista Latinoamericana de Estudios de Seguridad
Resumen
Contemporary societies are increasingly conditioned by the development of computer technology. This trend suggests a picture in which each human being is identified by the person-computer binomial while greater computerization of civil life is generating huge amounts of data that are likely to be managed for war purposes. The objective of this article is to address the potential utility of Bayesian networks aimed at monitoring and early detection of hybrid attacks of a global nature. We conclude that the use of inference and Bayesian networks is useful for monitoring, detection and supervision of the social component of hybrid threats globally through social network analysis.
Referencias bibliográficas
- Alonso, Diego, y Elisabet Tubau. 2002. “Inferencias bayesianas: una revisión”. Anuario de Psicología 33: 25–47.
- Anscombe, Francis John. 1961. “Bayesian statistics”. The American Statistician 15: 21-24. dx.doi.org/10.2307/2682504
- Anwar, Amaan, y Syed Imtiyaz Hassan. 2017. “Applying Artificial Intelligence Techniques to Prevent Cyber Assaults”. International Journal of Computational Intelligence Research 13:883-889.
- Bayes, Thomas. 1763. “An essay towards solving a problem in the doctrine of chances”. Philosophical Transactions 53, 370-418. dx.doi.org/10.1098/rstl.1763.0053
- Berger, Peter Ludwig, y Thomas Luckmann. 1968. La construcción social de la realidad. Buenos Aires: Amorrortu.
- Bolstad, William. 2007. Introduction to Bayesian Statistics. Hoboken: Wiley.
- Butler, Declan. 2016. “A World Where Everyone Has a Robot: Why 2040 Could Blow Your Mind”. Nature 530: 398-401. dx.doi.org/10.1038/530398a
- Castelvecchi, Davide. 2019. “Machine Learning Comes Up Against Unsolvable Problem”. Nature 565: 277. doi.org/10.1038/d41586-019-00083-3
- CIA (Central Intelligence Agency). 1968. “Bayes' theorem in the Korean war”. Intelligence Report No. 0605/68, Directorate of Intelligence.
- Cloud Security Alliance. 2012. “Top ten big data security and privacy challenges”, https://downloads.cloudsecurityalliance.org/initiatives/bdwg/Big_Data_Top_Ten_v1.pdf
- Colom, Guillem. 2019. “La amenaza híbrida: mitos, leyendas y realidades”. Instituto Español de Estudios Estratégicos 24. http://www.ieee.es/Galerias/fichero/docs_opinion/2019/DIEEEO24_2019GUICOL-hibrida.pdf
- Cowell, Robert, Philip Dawid, Steffen Lauritzen, y David Spiegelhalter. 1999. Probabilistic networks and expert systems. Harrisonburg: Springer.
- Das, Balaram. 1999. Representing uncertainties using bayesian networks. Australia: Department of Defence/Defence Science and Technology Organization.
- Dixon, John. 1970. Introducción a la probabilidad. Texto programado. México: Limusa-Wilely.
- Ducaru, Sorin Dumitru. 2016. “The Cyber Dimension of Modern Hybrid Warfare and Its Relevance for NATO”. Europolity 10: 7-23.
- Edwards, Ward, y Barbara Fasolo. 2001. “Decision Technology”. Annual Review of Psychology 52: 581-606.
- Fisk, Charles. 1994. “The sino-soviet border dispute: a comparison of the conventional and Bayesian methods for intelligence warning”, https://www.cia.gov/library
- Garbolino, Paolo, y Franco Taroni. 2002. “Evaluation of Scientific Evidence Using Bayesian Networks”. Forensic Science International 125: 149-155.
- Glymour, Clark. 2001. The Mind’s Arrows. Bayes Nets and Graphical Causal Models in Psychology. Cambridge: MIT Press.
- Glymour, Clark. 2003. “Learning, prediction and causal Bayes nets”. Trends in Cognitives Sciences 7: 43–48.
- Gopnik, Alison, Glymour, Clark, Sobel, David, Schulz, Laura, Kushnir, Tamar, y Danks, David. 2004. “A Theory of Causal Learning in Children: Causal and Bayes Nets”. Psychological Review 111: 3–32.
- Gopnik, Alison, y Laura Schulz. 2004. “Mechanisms of Theory Formation in Young Children”. Trends in Cognitives Sciences 8: 371–377.
- Gopnik, Alison, David Sobel, Laura Schulz, y Clark Glymour. 2001. “Causal Learning Mechanisms in Very Young Children: Two, Three, and Four-Years-Olds Infer Causal Relations from Patterns of Variation and Covariation”. Developmental Psychology 37: 620–629.
- Grinberg, Nir, Kenneth Joseph, Lisa Friedland, Briony Swire-Thompson, y David Lazer. 2019. “Fake News On Twitter During The 2016 U.S. Presidential Election”. Science 363: 374-378. 10.1126/science.aau2706
- Heckerman, David. 1995. A Tutorial On Learning with Bayesian. Redmon: Microsoft Research.
- Held, Leonhard, y Manuela Ott. 2018. “On P-values and Bayes Factors”. Annual Review of Statistics and its Application 5: 393-419. dx.doi.org/10.1146/annurev-statistics-031017-100307
- Hoffman, Frank. 2009. “Hybrid Warfare and Challenges”. Joint Force Quarterly 52: 34-39.
- Hoijtink, Herbert, Pascal van Kooten, y Hulsker, Koenraad. 2016. “Bayes Factors Have Frequency Properties-This Should Not Be Ignored: A Rejoinder to Morey, Wagenmakers, and Rouder”. Multivariate Behavioral Research 51: 20-22. 10.1080/00273171.2015.1071705
- Jarosz, Andrew, y Jennifer Wiley. 2014. “What Are the Odds? A Practical Guide to Computing and Reporting Bayes Factors”. Journal of Problem Solving 7: 2-9. dx.doi.org/10.7771/1932-6246.1167
- Jeffreys, Harold. 1931. Scientific Inference. Cambridge: Cambridge University Press.
- Jeffreys, Harold. 1948. Theory of Probability. Oxford: Oxford University Press.
- Jeon, Minjeong, y Paul De Boeck. 2017. “Decision Qualities of Bayes Factor and P Value-Based Hypothesis Testing”. Psychological Methods 22:340-360. dx.doi.org/10.1037/met0000140
- Kass, Robert, y Adrian Raftery. 1995. “Bayes Factors”. Journal of the American Statistical Association 90: 773-795. dx.doi.org/10.1080/01621459.1995.10476572
- Lafuente, Guillermo. 2015. “The Big Data Security Challenge”. Network Security 2015: 12-14. 10.1016/S1353-4858(15)70009-7
- Lanoszka, Alexander. 2016. “Russian Hybrid Warfare and Extended Deterrence in Eastern Europe”. International Affairs 92: 175-195.
- Lilienfeld, Scott, Steven Jay Lynn, Laura Namy, y Nancy Woolf. 2011. Psicología. Una introducción. Madrid: Pearson.
- López, Jorge. 2012. “Cómo construir y validar redes bayesianas con Netica”. Revista Electrónica de Metodología Aplicada 17: 1-17.
- Morey, Richard, y Jeffrey Rouder. 2011. “Bayes Factor Approaches for Testing Interval Null Hypothesis”. Psychological Methods 16: 406-419. dx.doi.org/10.1037/a0024377
- Morey, Richard Donald, Eric-Jan Wagenmakers, y Jeffrey Rouder. 2016. “Calibrated Bayes Factors Should Not Be Used: A reply to Hoijtink, van Kooten, and Hulsker”. Multivariate Behavioral Research 51: 11-19. dx.doi.org/10.1080/00273171.2015.1052710
- Oatley, Giles, y Brian Ewart. 2003. “Crimes Analysis Software: ‘Pins in Maps’, Clustering and Bayes Net Prediction”. Expert Systems with Applications 25: 569-588.
- O’Hagan, Anthony, y Bryan Luce. 2003. A premier on Bayesian statistics in health economics and outcome research. Sheffield: MEDTAP International.
- Puga, Jorge, Krzywinski, Martin, y Naomi Altman. 2015. “Points of Significance: Bayesian statistics”. Nature Methods 12: 377-378. doi.org/10.1038/nmeth.3368
- Rebolloso, Enrique. 1994. “Conducta colectiva y movimientos colectivos”. En Psicología social, coordinado por José Francisco Morales, 763-800. Madrid: McGraw Hill.
- Ríos, David, Jesús Ríos, y David Banks. 2012. “Adversarial Risk Analysis”. Journal of the American Journal Association 104:841-854. dx.doi.org/10.1198/jasa.2009.0155
- Ruiz-Ruano, Ana María. 2015. “Aprendizaje estructural de redes bayesianas para modelar el emprendimiento académico de base sostenible y tecnológica”. Tesis doctoral, Facultad de Ciencias de la Salud, Universidad Católica San Antonio de Murcia. http://hdl.handle.net/10952/1556
- Ruiz-Ruano, Ana María, y Jorge Puga. 2018. “Seguridad informática e inteligencia artificial en la era de la información masiva”. En Conflictos y diplomacia, desarrollo y paz, colaboración y medio ambiente, dirigido por César Augusto Giner y Juan José Delgado, 711-724. Navarra: Aranzadi.
- Scutari, Marco. 2010. “Learning Bayesian Networks with the bnlearn R Package”. Journal of Statistical Software 35 (3): 1-22. dx.doi.org/10.18637/jss.v035.i03
- Serrano, José. 2003. Iniciación a la estadística bayesiana. Madrid: Muralla/Hespérides.
- Sobel, David, Joshua Tenenbaum, y Alison Gopnik. 2004. “Children’s Causal Inferences from Indirect Evidence: Backwards Blocking and Bayesian Reasoning in Pre-Schoolers”. Cognitive Science 28: 303–333.
- Somiedo, Juan Pablo. 2018. “El análisis bayesiano como piedra angular de la inteligencia de alertas estratégicas”. Revista de Estudios en Seguridad Internacional 4 (1): 161-176. doi.org/10.18847/1.7.10
- Taddeo, Mariarosaria, Luciano y Floridi. 2018. “Regulate Artificial Intelligence to Avert Cyber Arms Race”. Nature 556: 296-298. doi.org/10.1038/d41586-018-04602-6
- Von Solms, Rossouw, y Johan van Niekerk. 2013. “From Information Security to Cyber Security”. Computers and Security 38: 97-102. doi.org/10.1016/j.cose.2013.04.004