Drugs Repurposing for Multi-Drug Resistant Bacterial Infections

  1. Vila Domínguez, Andrea
  2. Enrique Jiménez Mejías, Manuel
  3. Smani, Younes
Libro:
Drug Repurposing - Hypothesis, Molecular Aspects and Therapeutic Applications

Año de publicación: 2020

Tipo: Capítulo de Libro

DOI: 10.5772/INTECHOPEN.93635 GOOGLE SCHOLAR lock_openAcceso abierto editor

Referencias bibliográficas

  • Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, et al. WHO pathogens priority list working group: Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infectious Diseases. 2018;18:318-327. DOI: 10.1016/S1473-3099(17)30753-3
  • European Centre for Disease Prevention and Control. Surveillance of Antimicrobial Resistance in Europe 2018. Stockholm: ECDC; 2019
  • Centers for Disease Control and Prevention (CDC). Antibiotic Resistance Threats in the United States, 2019. Atlanta, GA: U.S: Department of Health and Human Services, CDC; 2019
  • Cassini A, Diaz Högberg L, Plachouras D, Quattrocchi A, Hoxha A, Skov Simonsen G, et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European economic area in 2015: A population-level modelling analysis. Lancet Infectious Diseases. 2019;19:56-66. DOI: 10.1016/S1473-3099(18)30605-4
  • O’Neill J. Tackling Drug-Resistant Infections Globally: Final Report, and Recommendations The Review on Antimicrobial Resistance. 2016. Available from: https://amr-review.org/sites/default/files/160525_Final%20paper_with%20cover.pdf [Accessed: 15 April 2020]
  • Fischbach MA, Walsh CT. Antibiotics for emerging pathogens. Science. 2009;325:1089-1093. DOI: 10.1126/science.1176667
  • Brown D. Antibiotic resistance breakers: Can repurposed drugs fill the antibiotic discovery void? Nature Reviews Drug Discovery. 2015;4:821-832. DOI: 10.1038/nrd4675
  • Rampioni G, Visca P, Leoni L, Imperi F. Drug repurposing for antivirulence therapy against opportunistic bacterial pathogens. Emerging Topics in Life Sciences. 2017;1:13-23. DOI: 10.1042/ETLS20160018
  • Miró-Canturri A, Ayerbe-Algaba R, Smani Y. Drug repurposing for the treatment of bacterial and fungal infections. Frontiers in Microbiology. 2019;10:41. DOI: 10.3389/fmicb.2019.00041
  • Theuretzbacher U, Outterson K, Engel A, Karlén A. The global preclinical antibacterial pipeline. Nature Reviews Microbiology. 2020;18(5):275-285. DOI: 10.1038/s41579-019-0288-0
  • Farha MA, Brown ED. Drug repurposing for antimicrobial discovery. Nature Microbiology. 2019;4:565-577
  • Swan GE. The pharmacology of halogenated salicylanilides and their anthelmintic use in animals. Journal of the South African Veterinary Association. 1999;70:61-70. DOI: 10.4102/jsava.v70i2.756
  • Xu J, Pachón-Ibáñez ME, Cebrero-Cangueiro T, Chen H, Sánchez-Céspedes J, Zhou J. Discovery of niclosamide and its O-alkylamino-tethered derivatives as potent antibacterial agents against carbapenemase-producing and/or colistin resistant Enterobacteriaceae isolates. Bioorganic and Medicinal Chemistry Letters. 2019;29:1399-1402. DOI: 10.1016/j.bmcl.2019.03.032
  • Costabile G, d’Angel I, Rampion G, Bondi R, Pompili B, Ascenzioni F, et al.Toward repositioning niclosamide for antivirulence therapy of Pseudomonas aeruginosa lung infections: Development of inhalable formulations through nanosuspension technology. Molecular Pharmaceutics. 2015;12:2604-2617. DOI: 10.1021/acs.molpharmaceut.5b00098
  • Imperi F, Massai F, Ramachandran Pillai C, Longo F, Zennaro E, Rampioni G, et al. New life for an old drug: The anthelmintic drug niclosamide inhibits Pseudomonas aeruginosa quorum sensing. Antimicrobial Agents and Chemotherapy. 2013;57:996-1005. DOI: 10.1128/AAC.01952-12
  • Cruz-Muñiz MY, López-Jacome LE, Hernández-Durán M, Franco-Cendejas R, Licona-Limón P, Ramos-Balderas JL, et al. Repurposing the anticancer drug mitomycin C for the treatment of persistent Acinetobacter baumannii infections. International Journal of Antimicrobial Agents. 2017;49(1):88-92. DOI: 10.1016/j.ijantimicag.2018.10.001
  • Domalaon R, Ammeter D, Brizuela M, Gorityala BK, Zhanel GG, Schweizer F. Repurposed antimicrobial combination therapy: Tobramycin-ciprofloxacin hybrid augments activity of the anticancer drug mitomycin C against multidrug-resistant Gram-negative bacteria. Frontiers in Microbiology. 2019;10:1556. DOI: 10.3389/fmicb.2019.01556
  • Kwan BW, Chowdhury N, Wood TK. Combatting bacterial infections by killing persister cells with mitomycin C. Environmental Microbiology. 2015;17(11):4406-4414. DOI: 10.1111/1462-2920.12873
  • Thangamani S, Younis W, Seleem MN. Repurposing celecoxib as a topical antimicrobial agent. Frontiers in Microbiology. 2015;6(7):50. DOI: 10.3389/fmicb.2015.00750
  • Yuan M, Chua SL, Liu Y, Drautz-moses DI, Kuok J, Yam H, et al. Repurposing the anticancer drug cisplatin with the aim of developing novel Pseudomonas aeruginosa infection control agents. Beilstein Journal of Organic Chemistry. 2018;14:3059-3069. DOI: 10.3762/bjoc.14.284
  • Abbas HA, Elsherbini AM, Shaldam MA. Repurposing metformin as a quorum sensing inhibitor in Pseudomonas aeruginosa. African Health Sciences. 2017;17(3):808-819. DOI: 10.4314/ahs.v17i3.24
  • Cheng YS, Sun W, Xu M, Shen M, Khraiwesh M, Sciotti RJ, et al. Repurposing screen identifies unconventional drugs with activity against multidrug resistant Acinetobacter baumannii. Frontiers in Cellular and Infection Microbiology. 2019;8:438. DOI: 10.3389/fcimb.2018.00438
  • Imperi F, Fiscarelli EV, Visaggio D, Leoni L, Visca P, Juan C. Activity and impact on resistance development of two antivirulence fluoropyrimidine drugs in Pseudomonas aeruginosa. Frontiers in Cellular and Infection Microbiology. 2019;9:49. DOI: 10.3389/fcimb.2019.00049
  • Ho Sui SJ, Lo R, Fernandes AR, Caulfield MD, Lerman JA, Xie L, et al. Raloxifene attenuates Pseudomonas aeruginosa pyocyanin production and virulence. International Journal of Antimicrobial Agents. 2012;40:246-251. DOI: 10.1016/j.ijantimicag.2012.05.009
  • D’Angelo F, Baldelli V, Halliday N, Pantalone P, Polticelli F, Fiscarelli E, et al. Identification of FDA-approved drugs as antivirulence agents targeting the pqs quorum sensing system of Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy. 2018;62:e1296-e1218. DOI: 10.1128/AAC.01296-18
  • Soheili V, Bazzaz BS, Abdollahpour N, Hadizadeh F. Investigation of Pseudomonas aeruginosa quorum-sensing signaling system for identifying multiple inhibitors using molecular docking and structural analysis methodology. Microbial Pathogenesis. 2015;89:73-78. DOI: 10.1016/j.micpath.2015.08.017
  • She P, Wang Y, Luo Z, Chen L, Tan R, Wang Y, et al. Meloxicam inhibits biofilm formation and enhances antimicrobial agents efficacy by Pseudomonas aeruginosa. Microbiology. 2018;7(1):e00545. DOI: 10.1002/mbo3.545
  • Maiden MM, Zachos MP, Waters CM. The ionophore oxyclozanide enhances tobramycin killing of Pseudomonas aeruginosa biofilms by permeabilizing cells and depolarizing the membrane potential. Journal of Antimicrobial Chemotherapy. 2019;74(4):894-906. DOI: 10.1093/jac/dky545
  • Stokes JM, MacNair CR, Ilyas B, French S, Cote JP, Bouwman C, et al. Pentamidine sensitizes Gram-negative pathogens to antibiotics and overcomes acquired colistin resistance. Nature Microbiology. 2017;2:17028. DOI: 10.1038/nmicrobiol.2017.28
  • Ayerbe-Algaba R, Gil-Marqués ML, Jiménez-Mejías ME, Sánchez-Encinales V, Parra-Millán R, Pachón-Ibáñez ME, et al. Synergistic activity of niclosamide in combination with colistin against colistin-susceptible and colistin-resistant Acinetobacter baumannii and Klebsiella pneumoniae. Frontiers in Cellular and Infection Microbiology. 2018;8:348. DOI: 10.3389/fcimb.2018.00348
  • Runci F, Bonchi C, Frangipani E, Visaggio D, Visca P. Acinetobacter baumannii biofilm formation in human serum and disruption by gallium. Antimicrobial Agents and Chemotherapy. 2017;61(1):e01563-e01516. DOI: 10.1128/AAC.01563-16
  • De Léséleuc L, Harris G, KuoLee R, Chen W. In vitro and in vivo biological activities of iron chelators and gallium nitrate against Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy. 2012;56:5397-5400. DOI: 10.1128/AAC.00778-12
  • Antunes LCS, Imperi F, Minandri F, Visca P. In vitro and in vivo antimicrobial activities of gallium nitrate against multidrug-resistant Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy. 2012;56(11):5961-5970. DOI: 10.1128/AAC.01519-12
  • Hijazi S, Visaggio D, Pirolo M, Frangipani E, Bernstein L, Visca P. Antimicrobial activity of gallium compounds on ESKAPE pathogens. Frontiers in Cellular and Infection Microbiology. 2018;8:316. DOI: 10.3389/fcimb.2018.00316
  • Rezzoagli C, Wilson D, Weigert M, Wyder S, Ku R. Probing the evolutionary robustness of two repurposed drugs targeting iron uptake in Pseudomonas aeruginosa. Evolution, Medicine, and Public Health. 2018;2018(1):246-259. DOI: 10.1093/emph/eoy026
  • Miró Canturri A, Ayerbe Algaba R, del Toro R, Pachón J, Smani Y. Tamoxifen repurposing to combat infections by multidrug-resistant Gram-negative bacilli. bioRxiv 2020. 2020.03.30.017475. doi: 10.1101/2020.03.30.017475
  • Nouari W, Ysmail-Dahlouk L, Aribi M. Vitamin D3 enhances bactericidal activity of macrophage against Pseudomonas aeruginosa. International Immunopharmacology. 2015;30:94-101. DOI: 10.1016/j.intimp.2015.11.033
  • Zabrodskii PF, Gromov MS, Maslyakov VV. Combined effects of M1 muscarinic acetylcholine receptor agonist TBPB and α7n-acetylcholine receptor activator GTS-21 on mouse mortality and blood concentration of proinflammatory cytokines in sepsis. Bulletin of Experimental Biology and Medicine. 2017;162(6):750-753. DOI: 10.1007/s10517-017-3704-3
  • Sitapara RA, Antoine DJ, Sharma L, Patel VS, Ashby CR Jr, Gorasiya S, et al. The α7 nicotinic acetylcholine receptor agonist GTS-21 improves bacterial clearance in mice by restoring hyperoxia-compromised macrophage function. Molecular Medicine. 2014;20:238-247. DOI: 10.2119/molmed.2013.00086
  • Janeiro -Pais JM, Pastor-Casas-Agudo V, López-Garcia D, González- Dacal J, Lamas-Meilán C, González-Martín M. Mitomicina C endovesical y fibrosis pulmonar. Actas Urologicas Españolas. 2009;33(7):822-825. DOI: 10.1016/s0210-4806(09)74237-8
  • Ueda A, Attila C, Whiteley M, Wood TK. Uracil influences quorum sensing and biofilm formation in Pseudomonas aeruginosa and fluorouracil is an antagonist. Microbial Biotechnology. 2009;2:62-74. DOI: 10.1111/j.1751-7915.2008.00060.x
  • Christiansen SH, Murphy RA, Juul-Madsen K, Fredborg M, Hvam ML, Axelgaard E, et al. The immunomodulatory drug glatiramer acetate is also an effective antimicrobial agent that kills Gram-negative bacteria. Scientific Reports. 2017;7:15653. DOI: 10.1038/s41598-017-15969-3
  • Antoniani D, Rossi E, Rinaldo S, Bocci P, Lolicato M, Paiardini A, et al. The immunosuppressive drug azathioprine inhibits biosynthesis of the bacterial signal molecule cyclic-di-GMP by interfering with intracellular nucleotide pool availability. Applied Microbiology and Biotechnology. 2013;97:7325-7336. DOI: 10.1007/s00253-013-4875-0
  • Gi M, Jeong J, Lee K, Lee KM, Toyofuku M, Yong DE, et al. A drug-repositioning screening identifies pentetic acid as a potential therapeutic agent for suppressing the elastase-mediated virulence of Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy. 2014;58:7205-7214. DOI: 10.1128/AAC.03063-14
  • Lieberman OJ, Orr MW, Wang Y, Lee VT. High-throughput screening using the differential radial capillary action of ligand assay identifies ebselen as an inhibitor of diguanylate cyclases. ACS Chemical Biology. 2014;9:183-192. DOI: 10.1021/cb400485k
  • Ayerbe-Algaba R, Gil-Marqués ML, Miró-Canturri A, Parra-Millán R, Pachón-Ibáñez ME, Jiménez-Mejías ME, et al. The anthelmintic oxyclozanide restores the activity of colistin against colistin-resistant Gram-negative bacilli. International Journal of Antimicrobial Agents. 2019;54(4):507-512. DOI: 10.1016/j.ijantimicag.2019.07.006
  • Miró-Canturri A, Ayerbe-Algaba R, Villodres ÁR, Pachón J, Smani Y. Repositioning rafoxanide to treat Gram-negative bacilli infections. The Journal of Antimicrobial Chemotherapy. 2020;75(7):1895-1905. DOI: 10.1093/jac/dkaa103
  • Miró Canturri A, Algaba RA, Pachón-Ibáñez M, Pachon-Diaz J, Smani Y. In vitro activity of ivermectin in combination with colistin against Gram-negative bacilli. In: 29th European Congress of Clinical Microbiology and Infectious Diseases; 16-19 April 2019. Amsterdam, Netherlands; 2019
  • Tran TB, Wang J, Doi Y, Velkov T, Bergen PJ, Pereira MO. Novel polymyxin combination with antineoplastic mitotane improved the bacterial killing against polymyxin-resistant multidrug-resistant Gram-negative pathogens. Frontiers in Microbiology. 2018;9:721. DOI: 10.3389/fmicb.2018.00721
  • Ogunniyi AD, Khazandi M, Stevens AJ, Sims SK, Page SW, Garg S, et al. Evaluation of robenidine analog NCL195 as a novel broad-spectrum antibacterial agent. PLoS One. 2017;12(9):e0183457. DOI: 10.1371/journal.pone.0183457
  • Nairn BL, Eliasson OS, Hyder DR, Long NJ, Majumdar A, Chakravorty S, et al. Fluorescence high-throughput screening for inhibitors of TonB action. Journal of Bacteriology. 2017;199:e889-e816. DOI: 10.1128/JB.00889-16
  • Ballouche M, Cornelis P, Baysse C. Iron metabolism: A promising target for antibacterial strategies. Recent Patents on Anti-Infective Drug Discovery. 2009;4:190-205. DOI: 10.2174/157489109789318514
  • Foley TL, Simeonov A. Targeting iron assimilation to develop new antibacterials. Expert Opinion on Drug Discovery. 2012;7:831-847. DOI: 10.1517/17460441.2012.708335
  • Garnacho-Montero J, Ortiz-Leyba C, Jiménez Jiménez FJ, Barrero-Almodóvar AE, García-Garmendia JL, Bernabeu-Wittell M, et al. Treatment of multidrug-resistant Acinetobacter baumannii ventilator-associated pneumonia (VAP) with intravenous colistin: A comparison with imipenem-susceptible VAP. Clinical Infectious Diseases. 2003;36:1111-1118. DOI: 10.1086/374337
  • Markou N, Markantonis SL, Dimitrakis E, Panidis D, Boutzouka E, Karatzas S, et al. Colistin serum concentrations after intravenous administration in critically ill patients with serious multidrug-resistant, Gram negative bacilli infections: A prospective, open-label, uncontrolled study. Clinical Therapy. 2008;30:143-511. DOI: 10.1016/j.clinthera.2008.01.015
  • Hoskins JM, Carey LA, McLeod HL. CYP2D6 and tamoxifen: DNA matters in breast cancer. Nature Reviews. Cancer. 2009;9:576-586. DOI: 10.1038/nrc2683
  • Domalaon R, Malaka P, Silva D, Kumar A, Zhanel GG, Schweizer F. The anthelmintic drug niclosamide synergizes with colistin and reverses colistin resistance in Gram-negative bacilli. Antimicrobial Agents and Chemotherapy. 2019;63(4):e02574-e02518. DOI: 10.1128/AAC.02574-18
  • Thangamani S, Mohammad H, Abushahba MF, Sobreira TJ, Hedrick VE, Paul LN, et al. Antibacterial activity and mechanism of action of auranofin against multi-drug resistant bacterial pathogens. Scientific Reports. 2016;6:22571. DOI: 10.1038/srep22571
  • Thangamani S, Mohammad H, Abushahba MFN, Hamed MI, Sobreira TJP, Hedrick VE, et al. Exploring simvastatin, an antihyperlipidemic drug, as a potential topical antibacterial agent. Scientific Reports. 2015;5:16407. DOI: 10.1038/srep16407
  • Khazandi M, Pi H, Chan WY, Ogunniyi AD, Sim JXF, Venter H, et al. In vitro antimicrobial activity of robenidine, ethylenediaminetetraacetic acid and polymyxin B nonapeptide against important human and veterinary pathogens. Frontiers in Microbiology. 2019;10:837. DOI: 10.3389/fmicb.2019.00837
  • Gellatly SL, Hancock REW. Pseudomonas aeruginosa: New insights into pathogenesis and host defenses. Pathogens and Disease. 2013;67:159-173. DOI: 10.1111/2049-632X.12033
  • Kang CI, Kim SH, Kim HB, Park SW, Choe YJ, Oh MD, et al. Pseudomonas aeruginosa bacteremia: Risk factors for mortality and influence of delayed receipt of effective antimicrobial therapy on clinical outcome. Clinical Infectious Diseases. 2003;37:745-751. DOI: 10.1086/377200
  • Vidal F, Mensa J, Almela M, Martínez JA, Marco F, Casals C, et al. Epidemiology and outcome of Pseudomonas aeruginosa bacteremia, with special emphasis on the influence of antibiotic treatment: Analysis of 189 episodes. Archives of Internal Medicine. 1996;156:2121-2126
  • Vincent JL. Nosocomial infections in adult intensive-care units. Lancet. 2003;361:2068-2077. DOI: 10.1016/S0140-6736(03)13644-6
  • Ali Z, Mumtaz N, Naz SA, Jabeen N, Shafique M. Multi-drug resistant Pseudomonas aeruginosa: A threat of nosocomial infections in tertiary care hospitals. Journal of the Pakistan Medical Association. 2015;65(1):12-16
  • Micek ST, Wunderink RG, Kollef MH, Chen C, Rello J, Chastre J, et al. An international multicenter retrospective study of Pseudomonas aeruginosa nosocomial pneumonia: Impact of multidrug resistance. Critical Care. 2015;19:219. DOI: 10.1186/s13054-015-0926-5
  • Kaye KS, Pogue JM. Infections caused by resistant Gram-negative bacteria: Epidemiology and management. Pharmacotherapy. 2015;35:949-962. DOI: 10.1002/phar.1636
  • El Solh AA, Alhajhusain A. Update on the treatment of Pseudomonas aeruginosa pneumonia. The Journal of Antimicrobial Chemotherapy. 2009;64:229-238. DOI: 10.1093/jac/dkp201
  • Wright H, Bonomo RA, Paterson DL. New agents for the treatment of infections with Gram-negative bacteria: Restoring the miracle or false dawn? Clinical Microbiology and Infection. 2017;23:704-712. DOI: 10.1016/j.cmi.2017.09.001
  • Rangel-Vega A, Bernstein LR, Mandujano-Tinoco EA, García-Contreras SJ, García-Contreras R. Drug repurposing as an alternative for the treatment of recalcitrant bacterial infections. Frontiers in Microbiology. 2015;6:282. DOI: 10.3389/fmicb.2015.00282
  • Kaneko Y, Thoendel M, Olakanmi O, Britigan BE, Singh PK. The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity. Journal of Clinical Investigation. 2007;117:877-888. DOI: 10.1172/JCI30783
  • Frangipani E, Bonchi C, Minandri F, Imperi F, Visca P. Pyochelin potentiates the inhibitory activity of gallium on Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy. 2014;58:5572-5575. DOI: 10.1128/AAC.03154-14
  • Bonchi C, Frangipani E, Imperi F, Visca P. Pyoverdine and proteases affect the response of Pseudomonas aeruginosa to gallium in human serum. Antimicrobial Agents and Chemotherapy. 2015;59:5641-5646. DOI: 10.1128/AAC.01097-15
  • García-Contreras R, Pérez-Eretza B, Lira-Silva E, Jasso-Chávez R, Coria-Jiménez R, Rangel-Vega A, et al. Gallium induces the production of virulence factors in Pseudomonas aeruginosa. Pathogens and Disease. 2014;1:95-98. DOI: 10.1111/2049-632X.12105
  • ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). Identifier NCT02354859, A Phase 2 IV gallium study for patients with cystic fibrosis (IGNITE Study). 2015. Available from: https://clinicaltrials.gov/ct2/show/NCT02354859
  • Artini M, Cellini R, Tilota A, Barbato M, Koverech A, Selan L. Effect of betamethasone in combination with antibiotics on gram positive and gram negative bacteria. International Journal of Immunopathology and Pharmacology. 2014;27:675-682. DOI: 10.1177/039463201402700426
  • Becker KA, Riethmüller J, Lüth A, Döring G, Kleuser B, Gulbins E. Acid sphingomyelinase inhibitors normalize pulmonary ceramide and inflammation in cystic fibrosis. American Journal of Respiratory Cell and Molecular Biology. 2010;42(6):716-724. DOI: 10.1165/rcmb.2009-0174OC
  • ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). Identifier NCT00515229, Anti-Inflammatory pulmonal therapy of CF-patients with amitriptyline and placebo. 2007. Available from: https://clinicaltrials.gov/ct2/show/NCT00515229 [Accessed: 11 July 2016]
  • Adams C, Icheva V, Deppisch C, Lauer J, Herrmann G, Graepler-Mainka U, et al. Long-term pulmonal therapy of cystic fibrosis-patients with amitriptyline. Cellular Physiology and Biochemistry. 2016;39(2):565-572. DOI: 10.1159/000445648
  • ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). Identifier NCT01299194, Atorvastatin in bronchiectasis in patients with Pseudomonas aeruginosa. 2011. Available from: https://clinicaltrials.gov/ct2/show/NCT01299194 [Accessed: 27 May 2017]
  • Bedi P, Chalmers JD, Graham C, Clarke A, Donaldson S, Doherty C, et al. A randomized controlled trial of atorvastatin in patients with bronchiectasis infected with Pseudomonas aeruginosa: A proof of concept study. Chest. 2017;152(2):368-378. DOI: 10.1016/j.chest.2017.05.017
  • Yoon SS, Coakley R, Lau GW, Lymar SV, Gaston B, Karabulut AC, et al. Anaerobic killing of mucoid Pseudomonas aeruginosa by acidified nitrite derivatives under cystic fibrosis airway conditions. Journal of Clinical Investigation. 2006;116:436-446. DOI: 10.1172/JCI24684
  • Major TA, Panmanee W, Mortensen JE, Gray LD, Hoglen N, Hassett DJ. Sodium nitrite-mediated killing of the major cystic fibrosis pathogens Pseudomonas aeruginosa, Staphylococcus aureus, and Burkholderia cepacia under anaerobic planktonic and biofilm conditions. Antimicrobial Agents and Chemotherapy. 2010;54(11):4671-4677. DOI: 10.1128/AAC.00379-10
  • ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). Identifier NCT02694393, Inhaled sodium nitrite as an antimicrobial for cystic fibrosis. 2016. Available from: https://www.clinicaltrials.gov/ct2/show/NCT02694393
  • ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). Identifier NCT02295566, RATNO, Reducing Antibiotic Tolerance Using Nitric Oxide in CF - a Phase 2 pilot study (RATNO). 2014. Available from: https://clinicaltrials.gov/ct2/show/NCT02295566
  • Vila J, Sáez-López E, Johnson JR, Römling U, Dobrindt U, Cantón R, et al. Escherichia coli: An old friend with new tidings. FEMS Microbiology Reviews. 2016;40:437-463. DOI: 10.1093/femsre/fuw005
  • Manges AR, Geum HM, Guo A, Edens TJ, Fibke CD, Pitout JDD. Global extraintestinal pathogenic Escherichia coli (ExPEC) lineages. Clinical Microbiology Reviews. 2019;32:e00135-e00118. DOI: 10.1128/CMR.00135-18
  • Solomkin JS, Mazuski JE, Bradkey JS, Rodvold KA, Goldstein EJC, Baron EJ, et al. Diagnosis and management of complicated intra-abdominal infection in adults and children: Guidelines by the surgical infection society and the Infectious Diseases Society of America. Clinical Infectious Diseases. 2010;50:133-164. DOI: 10.1089/sur.2009.9930
  • Paczosa MK, Mecsas J. Klebsiella pneumoniae: Going on the offense with astrong defense. Microbiology and Molecular Biology Reviews. 2016;80:629-661. DOI: 10.1128/MMBR.00078-15
  • Poirel L, Jayol A, Nordmann P. Polymyxins: Antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clinical Microbiology Reviews. 2017;30(2):557-596. DOI: 10.1128/CMR.00064-16
  • ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). Identifier NCT00783068, Anti-inflammatory effects of GTS-21 after LPS. 2008. Available from: https://clinicaltrials.gov/ct2/show/NCT00783068
  • Kox M, Pompe JC, Gordinou de Gouberville MC, van der Hoeven JG, Hoedemaekers CW, Pickkers P. Effects of the α7 nicotinic acetylcholine receptor agonist GTS-21 on the innate immune response in humans. Shock. 2011;36(1):5-11. DOI: 10.1097/SHK.0b013e3182168d56
  • Andersson JA, Sha J, Kirtley ML, Reyes E, Fitts EC, Dann SM, et al. Combating multidrug-resistant pathogens with host-directed nonantibiotic therapeutics. Antimicrobial Agents and Chemotherapy. 2017;62(1):e1943-e1917. DOI: 10.1128/AAC.01943-17
  • Cebrero-Cangueiro T, Álvarez-Marín R, Labrador-Herrera G, Smani Y, Cordero-Matía E, Pachón J, et al. In vitro activity of pentamidine alone and in combination with aminoglycosides, tigecycline, rifampicin, and doripenem against clinical strains of carbapenemase-producing and/or colistin-resistant Enterobacteriaceae. Frontiers in Cellular and Infection Microbiology. 2018;8:363. DOI: 10.3389/fcimb.2018.00363