Información implícita y explícita en la percepción del covid-19 en los medios de comunicación social en español, alemán y ruso

  1. Pilgun, María 1
  2. Koreneva Antonova, Olga
  1. 1 Institute of Linguistics, Russian Academy of Sciences; Russian State Social University
Revista:
Palabra Clave

ISSN: 2027-534X 0122-8285

Año de publicación: 2022

Título del ejemplar: The Impact of COVID-19 on Communication. Analysis and Retrospective of the Effects of the Pandemic on the Media Ecosystem; e2511

Volumen: 25

Número: 1

Tipo: Artículo

DOI: 10.5294/PACLA.2022.25.1.3 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Palabra Clave

Resumen

A pandemia ocasionada pela covid-19 mudou radicalmente a vida das pessoas e o estado de coisas estabelecido em todas as esferas da vida, além de transformar as ideias quanto ao meio ambiente, aos problemas sociais no âmbito micro e macroeconômico, e o mecanismo de mercado para manter a justiça econômica. As consequências da pandemia vêm deixando mais graves os problemas de individualismo, interseccionalidade, diversidade, inclusão etc. São observados riscos desproporcionais e piores perspectivas para os grupos sociais e vulneráveis. Nesse contexto, neste estudo transcultural, foi analisado o conteúdo das redes sociais, aplicando uma abordagem multimodal e recorrendo a tecnologias de redes neurais e a diferentes tipos de análise de texto sobre a percepção da covid-19 produzidos pelos atores de fala hispânica, alemã e russa. A análise de dados permitiu identificar traços comuns e diferentes da percepção de diversos aspectos dessa pandemia por parte dos atores comunicativos. Com a identidade dos temas expressos explicitamente, a informação implícita para os três grupos de usuários foi significativamente diferente e foi refletida no transcurso e na evolução diferenciados do mesmo evento em diferentes lugares do mundo, o que traz à luz em suas razões culturais e políticas.

Referencias bibliográficas

  • Aaron M., A., Garrett N., Panayiota P.-Z., Talmina, N. y Linzen T. (2020). Cross-linguistic syntactic evaluation of word prediction models. arXiv:2005.00187 [cs.CL]
  • Agrati, L. S. et al. (2021). Bridges and mediation in higher distance education. Second International Workshop, HELMeTO 2020, Bari, BA, Italy, 17-18 de septiembre de 2020. Revised Selected Papers. Springer International. DOI: https://doi.org/10.1007/978-3-030-67435-9
  • Brandon, P., Traylor, A. y Pater, J. (2019). Learning reduplication with a neural network without explicit variables. University of Massachusetts Amherst. Sin publicar. http://works.bepress.com/joe_pater/38/
  • Casero-Ripollés, A. (2020). Impact of Covid-19 on the media system. Communicative and democratic consequences of news consumption during the outbreak. El Profesional de la Información, 29(2), e290223. DOI: https://doi.org/10.3145/epi.2020.mar.23
  • Clarke, N. y Furnell, S. (eds.) (2020). Human aspects of information security and assurance. 14th IFIP WG 11.12 International Symposium, HAISA 2020, Mytilene, Lesbos, Greece, 8-10 de julio de 2020, Proceedings. Springer International. DOI: https://doi.org/10.1007/978-3-030-57404-8
  • Essam, B. A. y Abdo, M.S. (2020) How do Arab tweeters perceive the Covid-19 pandemic? Journal of Psycholinguistic Research, 50, 507-521. DOI: https://doi.org/10.1007/s10936-020-09715-6
  • Garrett, L. (2001). Understanding media’s response to epidemics. Public Health Reports, 116(2), 87. DOI: https://doi.org/10.1016/S0033-3549(04)50149-8
  • Glik, D. (2007). Risk communication for public health emergencies. Annual Review of Public Health, 28, 33-54. DOI: https://doi.org/10.1146/annurev.publhealth.28.021406.144123
  • Gouri, S. B. y Pravat, K. S. (2021). GeoComputation and public health. A spatial approach. Springer. DOI: https://doi.org/10.1007/978-3-030-71198-6
  • Goyal, M.K. y Gupta, A.K. (2020). Integrated Risk of Pandemic: Covid-19 Impacts, Resilience and Recommendations. Springer.
  • Heydari, S. T. et al. (2021). The effect of risk communication on preventive and protective behaviors during the Covid-19 outbreak: mediating role of risk perception. BMC Public Health 21(54). DOI: https://doi.org/10.1186/s12889-020-10125-5
  • Hobbs, A. (2020). Leadership during Covid-19: Conflict and collaboration. Sage. DOI: https://doi.org/10.4135/9781529752021
  • Horesh, D. y Brown, A. D. (2020). Traumatic stress in the age of Covid-19: A call to close critical gaps and adapt to new realities. Psychological Trauma, 12(4), 331-335. DOI: https://doi.org/10.1037/tra0000592
  • Kharlamov, A. A. y Pilgun, M. (2020). Neuroinformatics and semantic representations. Cambridge Scholars Publishing.
  • Liao, H. P. y Wang, J. L. (2021). The impact of epidemic information on the public’s worries and attitude toward epidemic prevention measures during the Covid-19 outbreak. Current Psychology. DOI: https://doi.org/10.1007/s12144-021-01364-9
  • Linzen, T. (2019). What can linguistics and deep learning contribute to each other? Response to Pater. Language, 95(1), e98-e108. DOI: https://doi.org/10.1353/lan.2019.0015
  • Martín-Moreno, J. M. et al. (2020). Reflexiones sobre cómo evaluar y mejorar la respuesta a la pandemia de covid-19. Gaceta Sanitaria. DOI: https://doi.org/10.1016/j.gaceta.2020.11.008
  • McCoy, R. T., Grant, E., Smolensky, P., Griffiths, T. L. y Linzen, T. (2020). Universal linguistic inductive biases via meta-learning. arXiv:2006.16324 [cs.CL]
  • OMS - Organización Mundial de la Salud (2021). Global research on coronavirus disease (Covid-19). WHO. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/global-research-on-novel-coronavirus-2019-nco
  • Pater, J. (2019). Generative linguistics and neural networks at 60: foundation, friction, and fusion. Language, 95(1), e41-e7. DOI: https://doi.org/10.1353/lan.2019.0009
  • Prasad, A. (2020). The organization of ideological discourse in times of unexpected crisis: Explaining how Covid-19 is exploited by populist leaders. Leadership, 16(3), 294-302. DOI: https://doi.org/10.1177/1742715020926783
  • Quick, L. (2020). Managing events: Real challenges, real outcomes. Sage.
  • Roundtree, A. K. (2018). Hospital tweets on H1N1 and death panels: Text mining the situational crisis communication response to health crises and controversies. Kome, 6(1), 32-62. DOI: https://doi.org/10.17646/KOME.2018.13
  • Singh, L. et al. (2020). A first look at Covid-19 information and misinformation sharing on Twitter. arXiv:2003.13907v1 [cs.SI]. https://arxiv.org/pdf/2003.13907.pdf
  • Stefanidis, A. et al. (2017). Zika in Twitter: Temporal variations of locations, actors, and concepts. JMIR Public Health and Surveillance, 3(2), e22. DOI: https://doi.org/10.2196/publichealth.6925
  • Wang, P-W. et al. (2021). Sources of Covid-19-related information in people with various levels of risk perception and preventive behaviors in Taiwan: A latent profile analysis. International Journal of Environmental Research and Public Health, 18(4), 2091. DOI: https://doi.org/10.3390/ijerph18042091
  • Wasdani, K. P. y Prasad, A. (2020). The impossibility of social distancing among the urban poor: the case of an Indian slum in the times of Covid-19. Local Environment, 25(5), 414-418. DOI: https://doi.org/10.1080/13549839.2020.1754375
  • Wenham, C., Smith, J. y Morgan, R. (2020). Covid-19: The gendered impacts of the outbreak. The Lancet, 395(10227), 846-848. DOI: https://doi.org/10.1016/S0140-6736(20)30526-2
  • Xifra, J. (2020). Comunicación corporativa, relaciones públicas y gestión del riesgo reputacional en tiempos del covid-19. El Profesional de la Información, 29(2), e290220. DOI: https://doi.org/10.3145/epi.2020.mar.20