Propuesta de diseño de una red inalámbrica de sensores y actuadores para riego, con tecnología de Internet de las Cosas

  1. Tovar Soto, J. P. 1
  2. García Navarrete, O. L. 2
  3. Gutiérrez Martínez , L. C.
  1. 1 St. Bonaventure University
    info

    St. Bonaventure University

    Saint Bonaventure, Estados Unidos

    ROR https://ror.org/026bv4494

  2. 2 Universidad Nacional de Colombia
    info

    Universidad Nacional de Colombia

    Bogotá, Colombia

    ROR https://ror.org/059yx9a68

Revista:
Investigación e Innovación en Ingenierías

ISSN: 2344-8652

Año de publicación: 2022

Título del ejemplar: Enero-Junio

Volumen: 10

Número: 1

Páginas: 99-123

Tipo: Artículo

DOI: 10.17081/INVINNO.10.1.5824 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Investigación e Innovación en Ingenierías

Resumen

Objective: This paper presents a detailed selection of IoT technologies for the design of an ambient humidity monitoring infrastructure to control crop irrigation. Methodology: The prototype design was supported by previous studies carried out by the authors and tests in 2019 at Finca el Porvenir in Cundinamarca, Colombia, in order to determine the best option to implement in the field through the use of Python software, and elements such as Raspberry Pi and the TTGO development board. Results: To determine the functionality of the software and hardware of the system, different static tests of the prototype were carried out by monitoring humidity and ambient temperature by means of the DHT22 sensor, whose information is sent from a transmitter node to a receiver node in a concentrator to later save the information in a database and, finally, to obtain graphs of the behavior of the relative humidity, temperature, and the actuation of the control element (solenoid valve). Conclusions: With this information it is possible to demonstrate the effectiveness of the prototype, the possibility of remote connection with the LoRa protocol and the handling and management of information from different crop areas through the GUI on the Raspberry Pi, generating a low-cost solution for access by small and medium producers in rural areas in Colombia.

Referencias bibliográficas

  • [1] United Nations. Sustainable Development Goals. 17 Goals to Transform Our World 2015. https://www.un.org/sustainabledevelopment/.
  • [2] García L, Parra L, Jimenez JM, Lloret J, Lorenz P. IoT-based smart irrigation systems: An overview on the recent trends on sensors and IoT systems for irrigation in precision agriculture. Sensors 2020;20:1042.
  • [3] FAO. El estado mundial de la agricultura y la alimentación 2020: Superar los desafí os relacionados con el agua en la agricultura. Food \& Agriculture Org.; n.d.
  • [4] Kumar SV, Singh CD, Upendar K. Review on IoT Based Precision Irrigation System in Agriculture. Curr J Appl Sci Technol 2020:15–26.
  • [5] Chavarro D, Vélez MI, Tovar G, Montenegro I, Hernández A, Olaya A. Los Objetivos de Desarrollo Sostenible en Colombia y el aporte de la ciencia, la tecnología y la innovación. Doc Trab 2017;1.
  • [6] Rubio MA. Innovación y desarrollo sostenible: el papel de las TIC en la agricultura del medio rural remoto. Desarro Local Sosten 2019.
  • [7] Tovar Soto JP, Solórzano Suárez JD los S, Badillo Rodríguez A, Rodríguez Cainaba GO. Internet de las cosas aplicado a la agricultura: estado actual. Lámpsakos 2019. https://doi.org/10.21501/21454086.3253.
  • [8] Rodrigues T, Delicato FC, Batista T, Pires PF, Pirmez L. An approach based on the domain perspective to develop WSAN applications. Softw Syst Model 2017;16:949–77.
  • [9] Ragavan S, Thangavel R. Gsm Based Low Cost Smart Irrigation System with Wireless Valve Control. Int J Sensors Sens Networks 2017;5:54–62.
  • [10] Coates RW, Delwiche MJ, Broad A, Holler M. Wireless sensor network with irrigation valve control. Comput Electron Agric 2013;96:13–22. https://doi.org/https://doi.org/10.1016/j.compag.2013.04.013.
  • [11] Usmonov M, Gregoretti F. Design and implementation of a LoRa based wireless control for drip irrigation systems. 2017 2nd Int. Conf. Robot. Autom. Eng., 2017, p. 248–53. https://doi.org/10.1109/ICRAE.2017.8291389.
  • [12] Ramachandran V, Ramalakshmi R, Srinivasan S. An Automated Irrigation System for Smart Agriculture Using the Internet of Things. 2018 15th Int. Conf. Control. Autom. Robot. Vis., 2018, p. 210–5. https://doi.org/10.1109/ICARCV.2018.8581221.
  • [13] Ahmad N, Hussain A, Ullah I, Zaidi BH. IOT based Wireless Sensor Network for Precision Agriculture. 2019 7th Int. Electr. Eng. Congr., 2019, p. 1–4. https://doi.org/10.1109/iEECON45304.2019.8938854.
  • [14] Lou X, Zhang L, Zhang X, Fan J, xue Hu, Li C. Design of Intelligent Farmland Environment Monitoring System Based on Wireless Sensor Network. J Phys Conf Ser 2020;1635:12031. https://doi.org/10.1088/1742-6596/1635/1/012031.
  • [15] Islam A, Akter K, Nipu NJ, Das A, Mahbubur Rahman M, Rahman M. IoT Based Power Efficient Agro Field Monitoring and Irrigation Control System : An Empirical Implementation in Precision Agriculture. 2018 Int. Conf. Innov. Sci. Eng. Technol., 2018, p. 372–7. https://doi.org/10.1109/ICISET.2018.8745605.
  • [16] Tiglao NM, Alipio M, Balanay JV, Saldivar E, Tiston JL. Agrinex: A low-cost wireless mesh-based smart irrigation system. Measurement 2020;161:107874. https://doi.org/https://doi.org/10.1016/j.measurement.2020.107874.
  • [17] Tovar Soto JP, Pareja Figueredo CF, García Navarrete OL, Gutiérrez Martinez LC. Performance evaluation of LoRa technology for agricultural applications in rural areas. DYNA 2021;88:69–78. https://doi.org/10.15446/dyna.v88n216.88258.
  • [18] Lozada J. Investigación aplicada: Definición, propiedad intelectual e industria. CienciAmérica Rev Divulg Científica La Univ Tecnológica Indoamérica 2014;3:47–50.
  • [19] Kannadhasan S, Shanmuganantham M. Agriculture Monitoring and Smart Irrigation System Based on Wireless Sensors. Int J Sensors Sens Networks 2019;7:51.
  • [20] Gajjar S, Kothari D, Upadhyay M, Dhingra V. FARMNET: Agriculture support system using Wireless Sensor and Actuator Network. 2017 Int. Conf. Wirel. Commun. Signal Process. Netw., 2017, p. 291–6. https://doi.org/10.1109/WiSPNET.2017.8299765.
  • [21] Supreetha MA, Mundada MR, Pooja JN, others. Design of a smart water-saving irrigation system for agriculture based on a wireless sensor network for better crop yield. Int. Conf. Commun. Cyber Phys. Eng. 2018, 2018, p. 93–104.
  • [22] Naveen N, Deepashree RK, Hemashree K, Sirisha V, Kiran Kumar R, Shiva Reddy M V. Automatic Drip Irrigation System by Deploying IOT On Agriculture n.d.
  • [23] Jiang X, Chen M, Chen W. Design and Implementation of Intelligent Controller of Low Voltage Solenoid Valve Based on ZigBee. 2018 37th Chinese Control Conf., 2018, p. 7066–9. https://doi.org/10.23919/ChiCC.2018.8484092.
  • [24] Bogdanoff M, Tayeb S. An ISM-Band Automated Irrigation System for Agriculture IoT. 2020 IEEE Int. IOT, Electron. Mechatronics Conf., 2020, p. 1–6. https://doi.org/10.1109/IEMTRONICS51293.2020.9216351.
  • [25] Kumar G. Precision Water Irrigation System for Agriculture using IoT Framework. Int J Mod Agric 2021;10:718–24.
  • [26] D. Heredia Acevedo, Y. F. Ceballos, y G. Sanchez Torres, "Modelo de simulación de eventos discretos para el análisis y mejora del proceso de atención al cliente", Investigación e Innovación en Ingenierías, vol. 8, n.º 2, pp. 44-61, 2020. DOI: https://doi.org/10.17081/invinno.8.2.3639
  • [27] K. Polo Bornachera., D.D. López Juvinao, and A. Henríquez Jaramillo, “Transferencia tecnológica para la producción limpia en la minería de materiales aluviales en La Guajira, Colombia,” Investigación e Innovación en Ingenierías ., vol. 8, pp. 6–20, 2020. DOI: https://doi.org/10.17081/invinno.8.1.3535
  • [28] Yuan ZX, Kang LX, Xin ZL, Chao SY. Irrigation remote control system based on LoRa intelligence. J Phys Conf Ser 2020;1635:12067. https://doi.org/10.1088/1742-6596/1635/1/012067.