Tecnologías de IoT eficaces para una plataforma de agricultura 4.0

  1. Jhonatan Paolo Tovar Soto
  2. Carlos Francisco Pareja Figueredo
  3. Luis Carlos Gutiérrez Martínez
Revista:
Ingeniare

ISSN: 2390-0504

Año de publicación: 2021

Número: 31

Páginas: 33-48

Tipo: Artículo

DOI: 10.18041/1909-2458/INGENIARE.31.8936 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Ingeniare

Resumen

This paper presents a selection of effective Internet of Things technologies for an agriculture 4.0 model by developing a numerical statistician. The information has been collected through a review of the tools that are used in agricultural monitoring platforms and subsequently, a selection has been made through standardized parameter estimation functions that provide clustering plots in order to determine those that have the greatest advantage and are most useful for the Internet of Things platform. Then, the results revealed that the low-cost technologies with the lowest power consumption and simplest to implement are: Sigfox, TTGO board and Raspberry Pi, and programming languages such as Java or Python. Finally, a scheme for agriculture 4.0 was defined, which can be useful for small-scale producers in the farm sector.

Referencias bibliográficas

  • J. Gonçalves Ribeiro, D. Yusuf Marinho y J.W. Martínez Espinosa, “Agricultura 4.0: desafios à produção de alimentos e inovações tecnológicas”, in Simpósio de Engenharia De Produção, vol. 2, pp. 1-7, 2018.
  • S. Aheleroff et al., “IoT-enabled smart appliances under industry 4.0: A case study”. Adv. Eng. Informatics, vol. 43, p. 101043, 2020.
  • A.F. Giraldo Cerón, “Tan cerca y tan lejos de la Agricultura 4.0 en Colombia”. Rev. Univ. EAFIT, vol. 55, no. 175, pp. 78-85, 2020.
  • N. Trendov, S. Varas y M. Zeng, “Tecnologías digitales en la agricultura y las zonas rurales,” Doc. orientación FAO, 2019.
  • N.U. Binda y F. Balbastre-Benavent, “Investigación cuantitativa e investigación cualitativa: buscando las ventajas de las diferentes metodologías de investigación,” Rev. Ciencias económicas, vol. 31, no. 2, pp. 179-187, 2013.
  • L. García, “Estudio del impacto técnico y económico de la transición de internet al Internet de las cosas (IoT) para el caso colombiano”. Universidad Nacional de Colombia, 2015.
  • R. Nukala, K. Panduru, A. Shields, D. Riordan, P. Doody y J. Walsh, “Internet of Things: A review from ‘Farm to Fork,’” in 2016 27th Irish Signals and Systems Conference (ISSC), pp. 1-6, 2016.
  • V.A.B. Meneses, J.M. Téllez y D.F.A. Velásquez, “Uso de drones para el análisis de imágenes multiespectrales en agricultura de precisión”. Aliment. Cienc. y Tecnol. Aliment., doi: 10.24054/01204211. v1.n1.2015.1647, 2017.
  • A. Rahman y M. Suryanegara, “The development of IoT LoRa: A performance evaluation on LoS and Non-LoS environment at 915 MHz ISM frequency”, doi: 10.1109/ICSIGSYS.2017.7967033, 2017.
  • J.M. Talavera et al., “Review of IoT applications in agro-industrial and environmental fields,” Computers and Electronics in Agriculture, doi: 10.1016/j.compag.2017.09.015, 2017.
  • S.I.O. Duque, “Monitoreo y control de variables ambientales mediante una red inalámbrica para agricultura de precisión en invernaderos”. Rev. Vector, pp. 51-60, 2017.
  • A. Tzounis, N. Katsoulas, T. Bartzanas y C. Kittas, “Internet of Things in agriculture, recent advances and future
  • challenges,” Biosystems Engineering, doi: 10.1016/j.biosystemseng.2017.09.007, 2017.
  • T. Cao-Hoang y C.N. Duy, “Environment monitoring system for agricultural application based on wireless sensor
  • network”, doi: 10.1109/ICIST.2017.7926499, 2017.
  • S. Wolfert, L. Ge, C. Verdouw y M.-J. Bogaardt, “Big Data in smart farming-a review,” Agric. Syst., vol. 153, pp. 69-80, 2017.
  • C. Cambra, S. Sendra, J. Lloret y L. García, “An IoT service-oriented system for agriculture monitoring”. doi: 10.1109/ICC.2017.7996640, 2017.
  • A. Kamilaris, A. Kartakoullis y F.X. Prenafeta-Boldú, “A review on the practice of Big Data analysis in agriculture”. Comput. Electron. Agric., vol. 143, pp. 23-37, 2017.
  • K.A. Patil, y N.R. Kale, “A model for smart agriculture using IoT”, doi: 10.1109/ICGTSPICC.2016.7955360, 2017.