Revisión de recursos satelitales para evaluar amenazas ambientales en fortificaciones de tapia

  1. Moreno Falcón, Mónica 1
  2. Ortiz Calderón, Rocío 1
  3. Ortiz Caderón, Pilar 1
  1. 1 Universidad Pablo de Olavide
    info

    Universidad Pablo de Olavide

    Sevilla, España

    ROR https://ror.org/02z749649

Revista:
Ge-conservación

ISSN: 1989-8568

Año de publicación: 2022

Número: 21

Páginas: 309-328

Tipo: Artículo

DOI: 10.37558/GEC.V21I1.1132 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Ge-conservación

Resumen

La naturaleza de las fortificaciones en tapia y las condiciones ambientales del entorno en el que se ubican condicionan las patologías que estas estructuras sufren ante la presencia de fuentes de humedad y fuertes vientos. Este trabajo tiene como objetivo revisar los principales mecanismos de degradación de las fortificaciones en tapia y evaluar el uso de la teledetección como herramienta de registro de las amenazas medioambientales que afectan a su preservación. Las imágenes y productos satélites seleccionados ofrecen información sobre precipitación, humedad del suelo, temperatura, intensidad, dirección y presencia de partículas en el viento. El uso de metodologías de análisis estadístico de grandes volúmenes de imágenes satelitales permite obtener máximas, medias y mínimas diarias, mensuales y anuales de estas variables. La aplicación de los recursos satelitales GPM, SMAP, MODIS, Merra-2 y el análisis estadístico de grandes volúmenes de imágenes para la conservación preventiva en Andalucía resulta de utilidad para monitorear las principales amenazas que afectan a las fortificaciones en tapia a nivel global: humedad, viento y temperatura.

Referencias bibliográficas

  • ABATE, N., & LASAPONARA, R. (2019). Preventive archaeology based on open remote sensing data and tools: The cases of Sant’Arsenio (SA) and Foggia (FG), Italy. Sustainability (Switzerland), 11(15). https://doi.org/10.3390/su11154145
  • AGAPIOU, A. (2017). Remote sensing heritage in a petabyte-scale: satellite data and heritage Earth Engine© applications. International Journal of Digital Earth, 10(1), 85–102. https://doi.org/10.1080/17538947.2016.1250829
  • AGAPIOU, A., & LYSANDROU, V. (2021). Observing thermal conditions of historic buildings through earth observation data and big data engine. Sensors, 21(13). https://doi.org/10.3390/S21134557
  • AGAPIOU, A., LYSANDROU, V., & HADJIMITSIS, D. G. (2020). Earth observation contribution to cultural heritage disaster risk management: Case study of eastern mediterranean open air archaeological monuments and sites. Remote Sensing, 12(8). https://doi.org/10.3390/RS12081330
  • ALAHACOON, N., & EDIRISINGHE, M. (2021). Spatial Variability of Rainfall Trends in Sri Lanka from 1989 to 2019 as an Indication of Climate Change. ISPRS International Journal of Geo-Information 2021, 10(2): 84. https://doi.org/10.3390/IJGI10020084
  • AONASHI, K., AWAKA, J., HIROSE, M., KOZU, T., KUBOTA, T., LIU, G., SHIGE, S., KIDA, S., SETO, S., TAKAHASHI, N., & TAKAYABU, Y. N. (2009). GSMaP Passive Microwave Precipitation Retrieval Algorithm : Algorithm Description and Validation. Journal of the Meteorological Society of Japan. Ser. II, 87A: 119–136. https://doi.org/10.2151/JMSJ.87A.119
  • ARRIGONI, A., BECKETT, C., CIANCIO, D., & DOTELLI, G. (2017). Life cycle analysis of environmental impact vs. durability of stabilised rammed earth. Construction and Building Materials, 142: 128–136. https://doi.org/10.1016/J.CONBUILDMAT.2017.03.066
  • ASHOURI, H., HSU, K. L., SOROOSHIAN, S., BRAITHWAITE, D. K., KNAPP, K. R., CECIL, L. D., NELSON, B. R., & PRAT, O. P. (2015a). PERSIANN-CDR: Daily Precipitation Climate Data Record from Multisatellite Observations for Hydrological and Climate Studies. Bulletin of the American Meteorological Society, 96(1): 69–83. https://doi.org/10.1175/BAMS-D-13-00068.1
  • ASHOURI, H., HSU, K. L., SOROOSHIAN, S., BRAITHWAITE, D. K., KNAPP, K. R., CECIL, L. D., NELSON, B. R., & PRAT, O. P. (2015b). PERSIANN-CDR: Daily Precipitation Climate Data Record from Multisatellite Observations for Hydrological and Climate Studies. Bulletin of the American Meteorological Society, 96(1): 69–83. https://doi.org/10.1175/BAMS-D-13-00068.1
  • ÁVILA, F., PUERTAS, E., & GALLEGO, R. (2021). Characterization of the mechanical and physical properties of unstabilized rammed earth: A review. Construction and Building Materials, 270, 121435. https://doi.org/10.1016/J.CONBUILDMAT.2020.121435
  • AVRAM, E., GUILLAUD, H., & HARDY, M. (2001). Characterization of Earthen Materials, in Terra Literature Review. An Overview of Research in Earthen Architecture Conservation.
  • AWANGE, J., & KIEMA, J. (2019). Fundamentals of Remote Sensing, 115–123. Springer, Cham. https://doi.org/10.1007/978-3-030-03017-9_7
  • BECKETT, C. T. S., JAQUIN, P. A., & MOREL, J. C. (2020). Weathering the storm: A framework to assess the resistance of earthen structures to water damage. Construction and Building Materials, 242, 118098. https://doi.org/10.1016/J.CONBUILDMAT.2020.118098
  • BISQUERT, M., SÁNCHEZ, J. M., & CASELLES, V. (2014). Modeling Fire Danger in Galicia and Asturias (Spain) from MODIS Images. Remote Sensing, 6(1): 540–554. https://doi.org/10.3390/RS6010540
  • BUI, Q. B., MOREL, J. C., VENKATARAMA REDDY, B. V., & GHAYAD, W. (2009). Durability of rammed earth walls exposed for 20 years to natural weathering. Building and Environment, 44(5): 912–919. https://doi.org/10.1016/J.BUILDENV.2008.07.001
  • BUI, QUOC BAO, MOREL, J. C., HANS, S., & WALKER, P. (2014a). Effect of moisture content on the mechanical characteristics of rammed earth. Construction and Building Materials, 54: 163–169. https://doi.org/10.1016/J.CONBUILDMAT.2013.12.067
  • BUI, QUOC BAO, MOREL, J. C., HANS, S., & WALKER, P. (2014b). Effect of moisture content on the mechanical characteristics of rammed earth. Construction and Building Materials, 54: 163–169. https://doi.org/10.1016/J.CONBUILDMAT.2013.12.067
  • CAI, J., ZHANG, Y., LI, Y., SAN LIANG, X., & JIANG, T. (2017). Analyzing the Characteristics of Soil Moisture Using GLDAS Data: A Case Study in Eastern China. Applied Sciences 7(6): 566. https://doi.org/10.3390/APP7060566
  • CANIVEL, J., & GRACIANI, A. (2012). Critical analysis of interventions in historical rammed-earth walls. Military buildings in the ancient Kingdom of Seville. In Mileto C., Vegas F., & Cristini V. (Eds.), Rammed Earth Conservation, Taylor & Francis Group, 289–295.
  • CANIVELL GARCÍA DE PAREDES, J. (2011). Metodología de diagnóstico y caracterización de fábricas históricas de tapia = Methodology for diagnosis and characterization of historical rammed-earth walls. https://dialnet.unirioja.es/servlet/tesis?codigo=24661&info=resumen&idioma=SPA
  • CHEN, F., LASAPONARA, R., & MASINI, N. (2017). An overview of satellite synthetic aperture radar remote sensing in archaeology: From site detection to monitoring. Journal of Cultural Heritage, 23: 5–11. https://doi.org/10.1016/J.CULHER.2015.05.003
  • CHEN, F., ZHOU, W., XU, H., PARCHARIDIS, I., LIN, H., & FANG, C. (2020). Space Technology Facilitates the Preventive Monitoring and Preservation of the Great Wall of the Ming Dynasty: A Comparative Study of the Qingtongxia and Zhangjiakou Sections in China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13: 5719–5729. https://doi.org/10.1109/JSTARS.2020.3023297
  • CHUVIECO, E. (2016). Fundamentals of satellite remote sensing: An environmental approach. https://books.google.es/books?hl=es&lr=&id=-nCmCwAAQBAJ&oi=fnd&pg=PP1&dq=CHUVIECO,+E.+y+HUETE,+A.+2016.+Fundamentals+of+satellite+remote+sensing,+Boca+Raton,+436+pp.&ots=H5bE48vBCx&sig=9xuUxZa-JG1ybjXzMtqsNkw6i0g
  • CHUVIECO, & EMILIO. (2007). Mirar desde el espacio o mirar hacia otro lado: tendencias en teledetección. In Documents d’Anàlisi Geogràfica (Issue 50). https://www.raco.cat/index.php/DocumentsAnalisi/article/view/86622
  • COOK, M., SCHOTT, J. R., MANDEL, J., & RAQUENO, N. (2014a). Development of an Operational Calibration Methodology for the Landsat Thermal Data Archive and Initial Testing of the Atmospheric Compensation Component of a Land Surface Temperature (LST) Product from the Archive. Remote Sensing 6(11): 11244–11266. https://doi.org/10.3390/RS61111244
  • COOK, M., SCHOTT, J. R., MANDEL, J., & RAQUENO, N. (2014b). Development of an Operational Calibration Methodology for the Landsat Thermal Data Archive and Initial Testing of the Atmospheric Compensation Component of a Land Surface Temperature (LST) Product from the Archive. Remote Sensing 6(11): 11244–11266. https://doi.org/10.3390/RS61111244
  • CORREIA, M., GUERRERO, L., & CROSBY, A. (2016). Technical Strategies for Conservation of Earthen Archaeological Architecture. 17(3): 224–256. https://doi.org/10.1080/13505033.2015.1129799
  • CUCA, B., & HADJIMITSIS, D. G. (2017). Space technology meets policy: An overview of Earth Observation sensors for monitoring of cultural landscapes within policy framework for Cultural Heritage. Journal of Archaeological Science: Reports, 14: 727–733. https://doi.org/10.1016/j.jasrep.2017.05.001
  • CUCCURULLO, A., GALLIPOLI, D., BRUNO, A. W., AUGARDE, C., HUGHES, P., & LA BORDERIE, C. (2021). A comparative study of the effects of particle grading and compaction effort on the strength and stiffness of earth building materials at different humidity levels. Construction and Building Materials, 306, 124770. https://doi.org/10.1016/J.CONBUILDMAT.2021.124770
  • ELFADALY, A., & LASAPONARA, R. (2019). On the use of satellite imagery and GIS tools to detect and characterize the urbanization around heritage sites: The case studies of the Catacombs of Mustafa Kamel in Alexandria, Egypt and the Aragonese Castle in Baia, Italy. Sustainability (Switzerland), 11(7). https://doi.org/10.3390/SU11072110
  • ELFADALY, A., WAFA, O., ABOUARAB, M. A. R., GUIDA, A., SPANU, P. G., & LASAPONARA, R. (2017). Geo-environmental estimation of land use changes and its effects on Egyptian temples at Luxor City. ISPRS International Journal of Geo-Information, 6(11). https://doi.org/10.3390/ijgi6110378
  • ENTEKHABI, D., NJOKU, E. G., O’NEILL, P. E., KELLOGG, K. H., CROW, W. T., EDELSTEIN, W. N., ENTIN, J. K., GOODMAN, S. D., JACKSON, T. J., JOHNSON, J., KIMBALL, J., PIEPMEIER, J. R., KOSTER, R. D., MARTIN, N., MCDONALD, K. C., MOGHADDAM, M., MORAN, S., REICHLE, R., SHI, J. C., … VAN ZYL, J. (2010). The soil moisture active passive (SMAP) mission. Proceedings of the IEEE, 98(5): 704–716. https://doi.org/10.1109/JPROC.2010.2043918
  • FALCÓN, M. M., & RUZ, R. D. (2020). PATRIMONIALIZACIÓN DE ARCHIVOS Y BIBLIOTECAS HISTÓRICOS UNIVERSITARIOS: EL CASO DE LA COLECCIÓN WORMALD DE LA UNIVERSIDAD DE TARAPACÁ. Revista de Historia Social y de Las Mentalidades, 24(2): 265–290. https://doi.org/10.35588/RHSM.V24I2.4251
  • FEDONIUK, M. A., KOVALCHUK, I. P., FESYUK, V. O., KIRCHUK, R. V., MERLENKO, I. M., & BONDARCHUK, S. P. (2021). Differences in the assessment of vegetation indexes in the EO-Browser and EOS landviewer services (on the example of Lutsk district lands). 20th International Conference Geoinformatics: Theoretical and Applied Aspects, 2021(1): 1–6. https://doi.org/10.3997/2214-4609.20215521134/CITE/REFWORKS
  • FUNK, C., PETERSON, P., LANDSFELD, M., PEDREROS, D., DATA, J. V.-S., & 2015, U. (2015). The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Nature. Com. https://www.nature.com/articles/sdata201566).
  • GANDREAU, D., & DELBOY, L. (2012). World heritage inventory of earthen architecture, 2012 (Crat. UNESCO (ed.)). CRATerre-ENSAG.
  • GARCÍA-SORIANO, L., & MILETO, C. (2015). Intervention construction techniques in monumental rammed earth architecture in Spain through ministry archives (1980–2013). Building Materials, IV, 3–6.
  • GEER, A. J., BAORDO, F., BORMANN, N., CHAMBON, P., ENGLISH, S. J., KAZUMORI, M., LAWRENCE, H., LEAN, P., LONITZA, K., & LUPU, C. (2017). The growing impact of satellite observations sensitive to humidity, cloud and precipitation. Quarterly Journal of the Royal Meteorological Society, 143(709): 3189–3206. https://doi.org/10.1002/QJ.3172
  • GERARD, P., MAHDAD, M., ROBERT MCCORMACK, A., & FRANÇOIS, B. (2015). A unified failure criterion for unstabilized rammed earth materials upon varying relative humidity conditions. Construction and Building Materials, 95: 437–447. https://doi.org/10.1016/J.CONBUILDMAT.2015.07.100
  • GHANE EZABADIA, N., AJDAR, S., & JAMALI, A. A. (2021). Analysis of dust changes using satellite images in Giovanni NASA and Sentinel-5P in Google Earth Engine in western Iran. JOURNAL OF NATURE AND SPATIAL SCIENCES, 1(1): 17–26. https://doi.org/10.30495/jonass.2021.680327
  • GHAZAL, N. K. (2020). Monitoring dust storm using normalized difference dust index (NDDI) and brightness temperature variation in Simi arid areas over Iraq. Iraqi Journal of Physics, 18(45): 68–75. https://doi.org/10.30723/ijp.18.45.68-75
  • GIUFFRIDA, G., CAPONETTO, R., & NOCERA, F. (2019). Hygrothermal properties of raw earth materials: A literature review. In Sustainability (Switzerland) 11(19): 5342. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/su11195342
  • GOMES, M. I., GONÇALVES, T. D., & FARIA, P. (2014). Unstabilized rammed earth: Characterization of material collected from old constructions in south portugal and comparison to normative requirements. International Journal of Architectural Heritage, 8(2): 185–212. https://doi.org/10.1080/15583058.2012.683133
  • GORELICK, N., HANCHER, M., DIXON, M., ILYUSHCHENKO, S., THAU, D., & MOORE, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202: 18–27. https://doi.org/10.1016/j.rse.2017.06.031
  • GU, Y., BROWN, J. F., VERDIN, J. P., & WARDLOW, B. (2007). A five-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States. Geophysical Research Letters, 34(6): L06407. https://doi.org/10.1029/2006GL029127
  • GUTIÉRREZ-CARRILLO, M. L., GUERRERO DELGADO, MC. C., SÁNCHEZ RAMOS, J., ARCO DÍAZ, J., BESTUÉ CARDIEL, I., & ÁLVAREZ DOMÍNGUEZ, S. (2021). Mitigating damage on heritage structures by continuous conservation using thermal real-time monitoring. Case study of Ziri Wall, city of Granada, Spain. Journal of Cleaner Production, 296, 126522. https://doi.org/10.1016/J.JCLEPRO.2021.126522
  • HADJIMITSIS, D., AGAPIOU, A., ALEXAKIS, D., & SARRIS, A. (2013). Exploring natural and anthropogenic risk for cultural heritage in Cyprus using remote sensing and GIS. International Journal of Digital Earth, 6(2): 115–142. https://doi.org/10.1080/17538947.2011.602119
  • HADJIMITSIS, D. G., THEMISTOCLEOUS, K., CUCA, B., AGAPIOU, A., LYSANDROU, V., LASAPONARA, R., MASINI, N., & SCHREIER, G. (2020). Remote Sensing for Archaeology and Cultural Landscapes : Best Practices and Perspectives Across Europe and the Middle East (T. K. Cuca Branka, A. A. Lysandrou Vasiliki, L. R. Masini Nicola, & Schreier Gunter (eds.)). http://www.springer.com/series/10182
  • HAMARD, E., CAMMAS, C., FABBRI, A., RAZAKAMANANTSOA, A., CAZACLIU, B., & MOREL, J. C. (2016). Historical Rammed Earth Process Description Thanks to Micromorphological Analysis. Http://Dx.Doi.Org/10.1080/15583058.2016.1222462, 11(3): 314–323. https://doi.org/10.1080/15583058.2016.1222462
  • HAMARD, E., CAMMAS, C., LEMERCIER, B., CAZACLIU, B., & MOREL, J. C. (2020). Micromorphological description of vernacular cob process and comparison with rammed earth. Frontiers of Architectural Research, 9(1): 203–215. https://doi.org/10.1016/J.FOAR.2019.06.007
  • HART, S., RAYMOND, K., WILLIAMS, C. J., JOHNSON, J., DEGAYNER, J., & GUEBARD, M. C. (2021). Precipitation impacts on earthen architecture for better implementation of cultural resource management in the US Southwest. Heritage Science, 9(1): 1–18. https://doi.org/10.1186/s40494-021-00615-z
  • HERSBACH, H., BELL, B., BERRISFORD, P., HIRAHARA, S., HORÁNYI, A., MUÑOZ-SABATER, J., NICOLAS, J., PEUBEY, C., RADU, R., SCHEPERS, D., SIMMONS, A., SOCI, C., ABDALLA, S., ABELLAN, X., BALSAMO, G., BECHTOLD, P., BIAVATI, G., BIDLOT, J., BONAVITA, M., … THÉPAUT, J. N. (2020a). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730): 1999–2049. https://doi.org/10.1002/QJ.3803
  • HERSBACH, H., BELL, B., BERRISFORD, P., HIRAHARA, S., HORÁNYI, A., MUÑOZ-SABATER, J., NICOLAS, J., PEUBEY, C., RADU, R., SCHEPERS, D., SIMMONS, A., SOCI, C., ABDALLA, S., ABELLAN, X., BALSAMO, G., BECHTOLD, P., BIAVATI, G., BIDLOT, J., BONAVITA, M., … THÉPAUT, J. N. (2020b). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730): 1999–2049. https://doi.org/10.1002/QJ.3803
  • HSU, J., HUANG, W. R., LIU, P. Y., & LI, X. (2021). Validation of CHIRPS Precipitation Estimates over Taiwan at Multiple Timescales. Remote Sensing 13(2): 254. https://doi.org/10.3390/RS13020254
  • HUNTINGTON, J. L., HEGEWISCH, K. C., DAUDERT, B., MORTON, C. G., ABATZOGLOU, J. T., MCEVOY, D. J., & ERICKSON, T. (2017). Climate Engine: Cloud Computing and Visualization of Climate and Remote Sensing Data for Advanced Natural Resource Monitoring and Process Understanding. Bulletin of the American Meteorological Society, 98(11): 2397–2410. https://doi.org/10.1175/BAMS-D-15-00324.1
  • IADANZA, C., CACACE, C., DEL CONTE, S., SPIZZICHINO, D., CESPA, S., & TRIGILA, A. (2013). Cultural Heritage, Landslide Risk and Remote Sensing in Italy. Landslide Science and Practice: Risk Assessment, Management and Mitigation, 6: 491–499. https://doi.org/10.1007/978-3-642-31319-6_65
  • Instituto Andaluz del patrimonio Histórico [IAPH] (s.f) Guía Digital del Patrimonio Cultural de Andalucía https://guiadigital.iaph.es/
  • JAMALI, A. A., GHORBANI KALKHAJEH, R., RANDHIR, T. O., & HE, S. (2022). Modeling relationship between land surface temperature anomaly and environmental factors using GEE and Giovanni. Journal of Environmental Management, 302, 113970. https://doi.org/10.1016/J.JENVMAN.2021.113970
  • JAQUIN, P. A., AUGARDE, C. E., & GERRARD, C. M. (2008). Chronological Description of the Spatial Development of Rammed Earth Techniques. Http://Dx.Doi.Org/10.1080/15583050801958826, 2(4): 377–400. https://doi.org/10.1080/15583050801958826
  • JIMÉNEZ DELGADO, M. C., & GUERRERO, I. C. (2007). The selection of soils for unstabilised earth building: A normative review. In Construction and Building Materials 21(2): 237–251. Elsevier. https://doi.org/10.1016/j.conbuildmat.2005.08.006
  • KARIYAWASAM, K. K. G. K. D., & JAYASINGHE, C. (2016). Cement stabilized rammed earth as a sustainable construction material. Construction and Building Materials, 105: 519–527. https://doi.org/10.1016/J.CONBUILDMAT.2015.12.189
  • KIM, Y., VAN ZYL, J. J., CHARBONNEAU, F., TRUDEL, M., & FERNANDES, R. (2009). A Time-Series Approach to Estimate Soil Moisture Using Polarimetric Radar Data. IEEE Trans. Geosci. Remote Sens, 47: 15–17.
  • KOSTA, A., PARASKEVOPOULOS, I., AGAPIOU, A., BATTISTIN, F., SERPETTI, M., WALDOCH, F., RĄCZKOWSKI, W., IORIO, A. DI, ANGELI, S. DE, & HADJIMITSIS, D. (2020a). Remote sensing techniques for archaeology: a state of art analysis of SAR methods for land movement. Https://Doi.Org/10.1117/12.2571722, 11524: 105–119. https://doi.org/10.1117/12.2571722
  • KOSTA, A., PARASKEVOPOULOS, I., AGAPIOU, A., BATTISTIN, F., SERPETTI, M., WALDOCH, F., RĄCZKOWSKI, W., IORIO, A. DI, ANGELI, S. DE, & HADJIMITSIS, D. (2020b). Remote sensing techniques for archaeology: a state of art analysis of SAR methods for land movement. Https://Doi.Org/10.1117/12.2571722, 11524: 105–119. https://doi.org/10.1117/12.2571722
  • KUBOTA, T., AONASHI, K., USHIO, T., SHIGE, S., TAKAYABU, Y. N., ARAI, Y., TASHIMA, T., KACHI, M., & OKI, R. (2017). Recent progress in global satellite mapping of precipitation (GSMAP) product. International Geoscience and Remote Sensing Symposium (IGARSS), 2017-July, 2712–2715. https://doi.org/10.1109/IGARSS.2017.8127556
  • KUMAR, A., GIRI, R. K., TALOOR, A. K., & SINGH, A. K. (2021). Rainfall trend, variability and changes over the state of Punjab, India 1981–2020: A geospatial approach. Remote Sensing Applications: Society and Environment, 23, 100595. https://doi.org/10.1016/J.RSASE.2021.100595
  • KUMAR, L., & MUTANGA, O. (2018). Google Earth Engine applications since inception: Usage, trends, and potential. Remote Sensing, 10(10). https://doi.org/10.3390/rs10101509
  • LALOUI, L., NUTH, M., & FRANÇOIS, B. (2013). Mechanics of Unsaturated Soils. In Mechanics of Unsaturated Geomaterials, 29–54. https://doi.org/10.1002/9781118616871.ch2
  • LASAPONARA, R., & MASINI, N. (2020). Big Earth Data for Cultural Heritage in the Copernicus Era. In Remote Sensing for Archaeology and Cultural Landscapes, 31–46. https://doi.org/10.1007/978-3-030-10979-0_3
  • LIESKOVSKÝ, T., FAIXOVÁ CHALACHANOVÁ, J., LESSOVÁ, L., & HORŇÁK, M. (2018). Analysis of LiDAR data with low density in the context of its applicability for the cultural heritage documentation. Advances and Trends in Geodesy, Cartography and Geoinformatics - Proceedings of the 10th International Scientific and Professional Conference on Geodesy, Cartography and Geoinformatics, 191–196. https://doi.org/10.1201/9780429505645-31/ANALYSIS-LIDAR-DATA-LOW-DENSITY-CONTEXT-APPLICABILITY-CULTURAL-HERITAGE-DOCUMENTATION-LIESKOVSKY-FAIXOVA-CHALACHANOVA-LESSOVA-HORNAK
  • LIU, J., FIIFI, D., HAGAN, T., LIU, Y., LIU, J. ;, HAGAN, D. F. T. ;, & LIU, Y. (2020). Global Land Surface Temperature Change (2003–2017) and Its Relationship with Climate Drivers: AIRS, MODIS, and ERA5-Land Based Analysis. Remote Sensing 13(1), 44. https://doi.org/10.3390/RS13010044
  • LOPEZ, T., AL BITAR, A., BIANCAMARIA, S., GÜNTNER, A., & JÄGGI, A. (2020). On the Use of Satellite Remote Sensing to Detect Floods and Droughts at Large Scales. Surveys in Geophysics, 41(6): 1461–1487. https://doi.org/10.1007/S10712-020-09618-0
  • LUO, L., WANG, X., GUO, H., LASAPONARA, R., ZONG, X., MASINI, N., WANG, G., SHI, P., KHATTELI, H., CHEN, F., TARIQ, S., SHAO, J., BACHAGHA, N., YANG, R., & YAO, Y. (2019a). Airborne and spaceborne remote sensing for archaeological and cultural heritage applications: A review of the century (1907–2017). Remote Sensing of Environment, 232(March), 111280. https://doi.org/10.1016/j.rse.2019.111280
  • LUO, L., WANG, X., GUO, H., LASAPONARA, R., ZONG, X., MASINI, N., WANG, G., SHI, P., KHATTELI, H., CHEN, F., TARIQ, S., SHAO, J., BACHAGHA, N., YANG, R., & YAO, Y. (2019b). Airborne and spaceborne remote sensing for archaeological and cultural heritage applications: A review of the century (1907–2017). Remote Sensing of Environment, 232. https://doi.org/10.1016/j.rse.2019.111280
  • MA, Y., WU, H., WANG, L., HUANG, B., RANJAN, R., ZOMAYA, A., & JIE, W. (2015). Remote sensing big data computing: Challenges and opportunities. Future Generation Computer Systems, 51: 47–60. https://doi.org/10.1016/j.future.2014.10.029
  • MARTÍN-DEL-RIO, J. J., FLORES-ALÉS, V., ALEJANDRE-SÁNCHEZ, F. J., & BLASCO-LÓPEZ, F. J. (2018). New Method for Historic Rammed-earth Wall Characterization: The Almohade Ramparts of Malaga and Seville. Https://Doi.Org/10.1080/00393630.2018.1544429, 64(6): 363–372. https://doi.org/10.1080/00393630.2018.1544429
  • MCGARRAGH, G., POULSEN, C., POVEY, A., THOMAS, G., CHRISTENSEN, M., SUS, O., SCHLUNDT, C., STAPELBERG, S., STENGEL, M., GRAINGER, D., MCGARRAGH, G., POULSEN, C., POVEY, A., THOMAS, G., CHRISTENSEN, M., SUS, O., SCHLUNDT, C., STAPELBERG, S., STENGEL, M., & GRAINGER, D. (2015). SNAP (Sentinel Application Platform) and the ESA Sentinel 3 Toolbox. ESASP, 734, 21. https://ui.adsabs.harvard.edu/abs/2015ESASP.734E..21Z/abstract
  • MILETO, C., & VEGAS, F. (2013). La restauración de la tapia en la Península Ibérica. Criterios, técnicas, resultados y perspectivas (C. Mileto & F. Vegas (eds.)). https://www.academia.edu/39838538/La_restauración_de_la_tapia_en_la_Península_Ibérica_Criterios_técnicas_resultados_y_perspectivas
  • MOREL, J. C., BUI, Q. B., & HAMARD, E. (2012). Weathering and durability of earthen material and structures. In Modern Earth Buildings: Materials, Engineering, Constructions and Applications, 282–303. Woodhead Publishing. https://doi.org/10.1533/9780857096166.2.282
  • MORENO, A. S. (1997). Estudios especiales de caracterización geotécnica y refuerzo del terreno. http://www.alhambra-patronato.es/ria/bitstream/handle/10514/14147/4 encriptado.pdf?sequence=3
  • MORENO FALCÓN, M., ORTIZ CALDERÓN, R., & ORTIZ CALDERÓN, P. (2021). Incendios en paisajes patrimoniales naturales: análisis y evaluación de riesgos en fortificaciones mediante el uso del Global Wildfire Information System. Revista PH, Iaph, 413–419. https://doi.org/10.33349/2021.104.4976
  • MORENO, M., ORTIZ, P., & ORTIZ, R. (2019). Vulnerability study of earth walls in urban fortifications using cause-effect matrixes and gis: The case of seville, carmona and estepa defensive fences. Mediterranean Archaeology and Archaeometry, 19(3): 119–138. https://doi.org/10.5281/zenodo.3583063
  • MOTA-LÓPEZ, M. I., MADERUELO-SANZ, R., PASTOR-VALLE, J. D., MENESES-RODRÍGUEZ, J. M., & ROMERO-CASADO, A. (2021). Analytical characterization of the almohad rammed-earth wall of Cáceres, Spain. Construction and Building Materials, 273. https://doi.org/10.1016/j.conbuildmat.2020.121676
  • MUÑOZ-SABATER, J., DUTRA, E., AGUSTÍ-PANAREDA, A., ALBERGEL, C., ARDUINI, G., BALSAMO, G., BOUSSETTA, S., CHOULGA, M., HARRIGAN, S., HERSBACH, H., MARTENS, B., MIRALLES, D. G., PILES, M., RODRÍGUEZ-FERNÁNDEZ, N. J., ZSOTER, E., BUONTEMPO, C., & THÉPAUT, J. N. (2021). ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth System Science Data, 13(9): 4349–4383. https://doi.org/10.5194/ESSD-13-4349-2021
  • MUTANGA, O., & KUMAR, L. (2019). Google Earth Engine Applications. Remote Sensing, 11(5): 591. https://doi.org/10.3390/rs11050591
  • NIROUMAND, H., AKBARI, R., KHANLARI, K., GÜLTEKIN, A. B., & BARCELO, J. A. (2021). A Systematic Literature Review of Rammed Earth Walls. Soil Mechanics and Foundation Engineering, 58(4): 295–301. https://doi.org/10.1007/S11204-021-09742-Y
  • OLIVEIRA, M. L. S., DARIO, C., TUTIKIAN, B. F., EHRENBRING, H. Z., ALMEIDA, C. C. O., & SILVA, L. F. O. (2019). Historic building materials from Alhambra: Nanoparticles and global climate change effects. Journal of Cleaner Production, 232: 751–758. https://doi.org/10.1016/J.JCLEPRO.2019.06.019
  • ONTIVEROS ORTEGA, E., SEBASTIAN PARDO, E., VALVERDE ESPINOSA, I., & GALLEGO ROCA, I. (2008). Estudio de los materiales de construcción de las murallas del Albayzín ( Granada ). PH Boletín Del Instituto Andaluz Del Patrimonio Histórico, 66: 32–47.
  • OTCOVSKÁ, T. P., MUŽÍKOVÁ, B., & PADEVĚT, P. (2019). MECHANICAL PROPERTIES OF RAMMED EARTH WITH RESPECT TO CLAY MIXTURE COMPOSITION. Acta Polytechnica, 59(4): 372–383. https://doi.org/10.14311/AP.2019.59.0372
  • PAUPORTÉ, E., & SGAMBI, L. (2019). Vulnerability of earth material to water: A state of the art. Structures and Architecture: Bridging the Gap and Crossing Borders - Proceedings of the 4th International Conference on Structures and Architecture, ICSA, 123–1130. https://doi.org/10.1201/9781315229126-134/VULNERABILITY-EARTH-MATERIAL-WATER-STATE-ART-PAUPORT
  • PEREZ, C., & MUÑOZ, A. (2006). Teledetección: nociones y aplicaciones. https://books.google.es/books?hl=es&lr=&id=SfrGxbO1DT0C&oi=fnd&pg=PA1&dq=Perez,+C.,+%26+Muñoz,+A.+L.+(2006).+Teledetección:+nociones+y+aplicaciones&ots=pFeeWv5hHX&sig=dOIwagLtIF63jiX0CbF7yHI7_Yk
  • QUINTERO, N., VIEDMA, O., URBIETA, I. R., & MORENO, J. M. (2019). Assessing Landscape Fire Hazard by Multitemporal Automatic Classification of Landsat Time Series Using the Google Earth Engine in West-Central Spain. Forests, 10(6): 518. https://doi.org/10.3390/F10060518
  • REDDI, L. N., JAIN, A. K., & YUN, H. B. (2012). Soil materials for earth construction: Properties, classification and suitability testing. In Modern Earth Buildings: Materials, Engineering, Constructions and Applications 155–171. https://doi.org/10.1533/9780857096166.2.155
  • RETALIS, A., KATSANOS, D., MICHAELIDES, S., & TYMVIOS, F. (2022). Evaluation of high-resolution satellite precipitation data over the Mediterranean Region. Precipitation Science, 159–175. https://doi.org/10.1016/B978-0-12-822973-6.00017-2
  • RICHARDS, J., ZHAO, G., ZHANG, H., & VILES, H. (2019). A controlled field experiment to investigate the deterioration of earthen heritage by wind and rain. Heritage Science, 7(1): 1–13. https://doi.org/10.1186/S40494-019-0293-7/FIGURES/6
  • RICHARDS, JENNY, VILES, H., & GUO, Q. (2020). The importance of wind as a driver of earthen heritage deterioration in dryland environments. Geomorphology, 369, 107363. https://doi.org/10.1016/J.GEOMORPH.2020.107363
  • RODRÍGUEZ-GONZÁLVEZ, P., FERNÁNDEZ-PALACIOS, B. J., MUÑOZ-NIETO, ÁNGEL L., ARIAS-SANCHEZ, P., & GONZALEZ-AGUILERA, D. (2017). Mobile LiDAR System: New Possibilities for the Documentation and Dissemination of Large Cultural Heritage Sites. Remote Sensing 9(3): 189. https://doi.org/10.3390/RS9030189
  • RODRÍGUEZ PÉREZ, D., SÁNCHEZ CARNERO, N., DOMÍNGUEZ GÓMEZ, J. A., & MARTA PASTRANA, C. (2015). Cuestiones de teledetección (UNED (ed.)
  • RUFIN, P., RABE, A., NILL, L., & HOSTERT, P. (n.d.). GEE TIMESERIES EXPLORER FOR QGIS-INSTANT ACCESS TO PETABYTES OF EARTH OBSERVATION DATA. https://doi.org/10.5194/isprs-archives-XLVI-4-W2-2021-155-2021
  • SANTOS, C. A. G., BRASIL NETO, R. M., NASCIMENTO, T. V. M. DO, SILVA, R. M. DA, MISHRA, M., & FRADE, T. G. (2021). Geospatial drought severity analysis based on PERSIANN-CDR-estimated rainfall data for Odisha state in India (1983–2018). Science of The Total Environment, 750:141258. https://doi.org/10.1016/J.SCITOTENV.2020.141258
  • SARIKHANI, A., DEHGHANI, M., KARIMI-JASHNI, A., & SAADAT, S. (2021). A New Approach for Dust Storm Detection Using MODIS Data. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 45(2): 963–969. https://doi.org/10.1007/S40996-020-00508-4/TABLES/1
  • SERRANO-CHACÓN, Á. R., MASCORT-ALBEA, E. J., CANIVELL, J., ROMERO-HERNÁNDEZ, R., & JARAMILLO-MORILLA, A. (2021). Multi-Criteria Parametric Verifications for Stability Diagnosis of Rammed-Earth Historic Urban Ramparts Working as Retaining Walls. Applied Sciences, 11(6): 2744. https://doi.org/10.3390/APP11062744
  • SHEN, Z., YONG, B., GOURLEY, J. J., QI, W., LU, D., LIU, J., REN, L., HONG, Y., & ZHANG, J. (2020). Recent global performance of the Climate Hazards group Infrared Precipitation (CHIRP) with Stations (CHIRPS). Journal of Hydrology, 591, 125284. https://doi.org/10.1016/J.JHYDROL.2020.125284
  • SOBRINO, J. (2001). Teledetección. https://books.google.es/books?hl=es&lr=&id=Yb6xIldfoT0C&oi=fnd&pg=PA73&dq=Sobrino,+J.+A.+(2001).+Teledetección.+Universitat+de+Valencia.&ots=oTwCuqKD1m&sig=2gIM3L8U81oopLjIZYwx0-MCcmU
  • SUN, Q., MIAO, C., DUAN, Q., ASHOURI, H., SOROOSHIAN, S., & HSU, K.-L. (2018). A Review of Global Precipitation Data Sets: Data Sources, Estimation, and Intercomparisons. Reviews of Geophysics, 56(1): 79–107. https://doi.org/10.1002/2017RG000574
  • TANG, G., CLARK, M. P., PAPALEXIOU, S. M., MA, Z., & HONG, Y. (2020). Have satellite precipitation products improved over last two decades? A comprehensive comparison of GPM IMERG with nine satellite and reanalysis datasets. Remote Sensing of Environment, 240, 111697. https://doi.org/10.1016/J.RSE.2020.111697
  • TAPETE, D., & CIGNA, F. (2017a). Trends and perspectives of space-borne SAR remote sensing for archaeological landscape and cultural heritage applications. Journal of Archaeological Science: Reports, 14: 716–726. https://doi.org/10.1016/J.JASREP.2016.07.017
  • TAPETE, D., & CIGNA, F. (2017b). Trends and perspectives of space-borne SAR remote sensing for archaeological landscape and cultural heritage applications. Journal of Archaeological Science: Reports, 14: 716–726. https://doi.org/10.1016/J.JASREP.2016.07.017
  • TETZNER, D., THOMAS, E., & ALLEN, C. (2019). A Validation of ERA5 Reanalysis Data in the Southern Antarctic Peninsula—Ellsworth Land Region, and Its Implications for Ice Core Studies. Geosciences, 9(7): 289. https://doi.org/10.3390/GEOSCIENCES9070289
  • THEMISTOCLEOUS, K., & DANEZIS, C. (2020a). Monitoring Cultural Heritage Sites Affected by Geo-Hazards Using In Situ and SAR Data: The Choirokoitia Case Study. 285–308. https://doi.org/10.1007/978-3-030-10979-0_16
  • THEMISTOCLEOUS, K., & DANEZIS, C. (2020b). Monitoring Cultural Heritage Sites Affected by Geo-Hazards Using In Situ and SAR Data: The Choirokoitia Case Study. 285–308. https://doi.org/10.1007/978-3-030-10979-0_16
  • TITOLO, A. (2021). Use of Time-Series NDWI to Monitor Emerging Archaeological Sites: Case Studies from Iraqi Artificial Reservoirs. Remote Sensing, 13(4): 786. https://doi.org/10.3390/rs13040786
  • TRIER, Ø. D., REKSTEN, J. H., & LØSETH, K. (2021). Automated mapping of cultural heritage in Norway from airborne lidar data using faster R-CNN. International Journal of Applied Earth Observation and Geoinformation, 95, 102241. https://doi.org/10.1016/J.JAG.2020.102241
  • VILLACRESES, J. P., GRANADOS, J., CAICEDO, B., TORRES-RODAS, P., & YÉPEZ, F. (2021). Seismic and hydromechanical performance of rammed earth walls under changing environmental conditions. Construction and Building Materials, 300, 124331. https://doi.org/10.1016/J.CONBUILDMAT.2021.124331
  • WELLMANN, T., SCHUG, F., HAASE, D., PFLUGMACHER, D., & VAN DER LINDEN, S. (2020). Green growth? On the relation between population density, land use and vegetation cover fractions in a city using a 30-years Landsat time series. Landscape and Urban Planning, 202, 103857. https://doi.org/10.1016/J.LANDURBPLAN.2020.103857
  • WENG, Q. (2014). Scale issues in remote sensing. John Wiley & Sons. ISBN : 1-118-80162-8.
  • XIE, Y., ZHANG, W., & QU, J. J. (2017). Detection of Asian Dust Storm Using MODIS Measurements. Remote Sensing, 9(8), 869. https://doi.org/10.3390/RS9080869
  • ZHANG, X., ZHANG, T., ZHOU, P., SHAO, Y., & GAO, S. (2017). Validation Analysis of SMAP and AMSR2 Soil Moisture Products over the United States Using Ground-Based Measurements. Remote Sensing, 9(2), 104. https://doi.org/10.3390/RS9020104