Ecuaciones diferenciales y en diferencias aplicadas a los conceptos económicos y financieros

  1. Ángel F. Tenorio Villalón 1
  2. Ana M. Martín Caraballo 1
  3. Concepción Paralera Morales 1
  4. Ignacio Contreras Rubio 1
  1. 1 Universidad Pablo de Olavide
    info

    Universidad Pablo de Olavide

    Sevilla, España

    ROR https://ror.org/02z749649

Revista:
Revista de métodos cuantitativos para la economía y la empresa

ISSN: 1886-516X

Año de publicación: 2013

Volumen: 16

Páginas: 166-199

Tipo: Artículo

Otras publicaciones en: Revista de métodos cuantitativos para la economía y la empresa

Resumen

This paper deals with the use of differential equations and finite difference methods for solving several problems in the field of Economics and Business Administration. Economics usually needs to study the evolution of the values which are taken by a given variable in different moments. If the time variable works in a continuous way, its evolution is studied by differential equations. Otherwise, time is a discrete variable and finite difference methods must be used. In addition, to expound the evolution of the notions of differential and difference equations, the goal of this paper is to show a general view (but not comprehensive) of their many applications for explaining economical and financial phenomena.

Referencias bibliográficas

  • K.K. Aase, S.A. Persson (1994): Pricing of unit-linked life insurance policies. Scandinavian Actuarial Journal 1994, pp. 26–52.
  • Y. Achdou, O. Bokanowski, T. Lelievre (2012): Partial Differential Equations in Finance. En F. Fabozzi (ed.): The Encyclopedia of Financial Models Vol. 2. Wiley: Hoboken.
  • F. Antonelli, E. Barucci, M. Mancino (2001): Asset pricing with a forward–backward stochastic differential utility. Economic Letters 72, pp. 151–157.
  • P. Apianus (1527): Ein newe und wolgegründete underweisung aller Kauffmanns Rechnung in dreyen Büchern, mit schönen Regeln und fragstücken begriffen, Ingolstadt.
  • Arquímedes / Eutocio (2005): Tratados I / Comentarios, Editorial Gredos: Madrid, pp. 99–234. Traducción al castellano del tratado “Sobre la esfera y el cilindro” (escrito hacia 225 a.C.).
  • Arquímedes (1993): El método relativo a los teoremas mecánicos, Universidad Autónoma de Barcelona: Barcelona. Traducción al castellano del original escrito en s. III a.C.
  • I. Barrow (1916): Geometrical Lectures, Open Court Publishing: Londres. Traducción al inglés de la obra original publicada en 1670.
  • S. Basov (2004): Lie groups of partial differential equations and their application to the multidimensional screening problems. En Econometric Society 2004 Australasian Meetings, 44.
  • J. Bellaïche (2010): On the path-dependence of economic growth. Journal of Mathematical Economics 46, pp. 163–178.
  • R.E. Bellman (1954): Dynamic Programming and a new formalism in the calculus of variations. Proc. Nat. Acad. Sci. 40, pp. 231–235.
  • R.E. Bellman (1957): Dynamic Programming. Princeton University Press: Princeton.
  • T.S. Bhanu Murthy (1994): A Modern Introduction to Ancient Indian Mathematics, Wiley Eastern: Nueva Deli.
  • J. Binet (1843): Mémoire sur l'integration des equations linéaires aux differences finies d'un ordre quelconque, à coefficients variables. Comptes Rendus Acad. Sci. XVII, pp. 559–567.
  • F. Black, M. Scholes (1973): The pricing of options and corporate liabilities. Journal of Political Economy 81, pp. 637–654.
  • G. Box, G. Jenkins (1970): Time Series Analysis, Forecasting and Control. Holden Day. San Francisco.
  • P. Cagan (1956): The monetary dynamics of hyperinflation. En M. Friedman (ed.): Studies in the quantity theory of money, University of Chicago Press: Chicago, pp. 25–43.
  • G. Cardano (1545): Artis magnae, sive de regulis algebraicis, Nuremberg.
  • D. Cass (1965): Optimum growth in an aggregative model of capital accumulation. Review of Economic Studies 32, pp. 233–240.
  • A.L. Cauchy (1825): Mémoire sur les intégrales définies, prises entre des limites imaginaires, De Bure Frères: París.
  • A.L. Cauchy (1827): Mémoire sur les intégrales définies. Mém. Acad. Sci. Inst. France 1, pp. 599–799. Presentada originalmente en 1814.
  • A.L. Cauchy (1842a): Mémoire sur un théorème fondamental, dans le calcul intégral. Comptes Rendus Acad. Sci. XIV, pp. 1020–1026.
  • A.L. Cauchy (1842b): Mémoire sur l'emploi du calcul des limites dans l'intégration des équations aux dérivées partielles. Comptes Rendus Acad. Sci. XV, pp. 44–59.
  • A.L. Cauchy (1842c): Mémoire sur l'application du calcul des limites à l'intégration d’un système d’équations aux dérivées partielles. Comptes Rendus Acad. Sci. XV, pp. 85–101.
  • A.L. Cauchy (1842d): Mémoire sur les systèmes d'équations aux dérivées partielles d'ordre quelconque, et sur leur réduction à des systèmes d'équations linéaires du premier order. Comptes Rendus Acad. Sci. XV, pp. 131–138.
  • B. Cavalieri (1635): Geometria indivisibilibus continuorum nova quadam ratione promota, Ex-typo-graphia de Duciis: Bolonia.
  • Y.T. Chen, C.F. Lee, Y.C. Sheu (2007): An ODE approach for the expected discounted penalty at ruin in a jump-diffusion model. Finance and Stochastics 11, pp. 323–355.
  • A. de Moivre (1730): Miscellanea analytica de seriebus et quadraturis, Tonson and J. Watts: Londres.
  • P.R. de Montmort (1708): Essay d'analyse sur les jeux de hazard, Quillau: París.
  • L. de Pisa (2003): Liber Abaci, Springer: Nueva York. Traducción al inglés del original de 1202.
  • R. Dornbusch (1976): Expectations and exchange rate dynamics. Journal of Political Economy 84, pp. 1161–1176.
  • D.J. Duffy (2006): Finite Difference Methods in Financial Engineering: A Partial Differential Equation Approach. John Wiley & Sons: Chichester.
  • Euclides (1994): Elementos. Libros V-XIII, Editorial Gredos: Madrid. Traducción al español del original datado hacia 300 a.C.
  • L. Euler (1728): Nova methodus innumerabiles aequationes differentials secundi gradus reducendi ad aequationes differentials primi gradus. Comm. Acad. Scient. Imp. Petrop. 3, pp. 134–137. [Fecha real de publicación 1732].
  • L. Euler (1743): De integratione aequationum differentialium altiorum graduum. Misc. Berolin. 7, pp. 193–242.
  • L. Euler (1744): De constructione aequationum. Comm. Acad. Scient. Petrop. 9, pp. 85–97.
  • L. Euler (1757): Principes généraux du mouvement des fluides. Mém. Acad. Sci. Berlin 11, pp. 274–315.
  • L. Euler (1768-1770): Institutionum calculi integralis. Vol. I-III, Imp. Acad. Imper. Scient.: San Petersburgo.
  • J.M. Fleming (1962): Domestic financial policies under fixed and under floating exchange rates. International Monetary Fund Staff Papers 9, pp. 369–379.
  • J. García (2008): Matemáticas Financieras con ecuaciones de diferencia finita (5ª Ed.). D.C: Pearson Educación de Colombia, Bogotá.
  • C.I. Gerhardt (1849): Leibnizens Mathematische Schriften Vol. I, Verlag: Berlín, carta XLII (a Oldenburg).
  • I. Gibson (1983): Protagonistas de la civilización: Arquímedes, Editorial Debate: Madrid.
  • J.P. Gould (1968): Adjustment costs in the theory of investment of the firm. Review of Economic Studies 35, pp. 47–55.
  • J. Gow (2010): A Short History of Greek Mathematics, Cambridge University Press: New York. Reimpresión del original de 1884.
  • J.P. Gram (1910): Professor Thiele som aktuar. Dansk Forsikrings Arbog 1910, pp. 26–37.
  • J. Gregory (1667): Vera Circuli et Hyperbolae Quadratura, Holden: Londres.
  • T.L. Heath (1921): A History of Greek Mathematics. Vol I, Oxford University Press: Oxford.
  • I. Hernández, C. Mateos, J. Núñez, A.F. Tenorio (2009): Lie Theory: Applications to problems in Mathematical Finance and Economics. Applied Mathematics and Computation 208, pp. 446–452.
  • S.L. Heston (1993): A closed-form solution for options with stochastic volatility with applications to bond and currency options. Review of Financial Studies 6, pp. 327–343.
  • J.M. Hoem (1969): Markov chain models in life insurance. Blätter der Deutschen Gesellschaft für Versicherungsmathematik 9, pp. 91–107.
  • L. Hui (1999): The Nine Chapters on the Mathematical Art. Oxford University Press: Oxford. Traducción al inglés del texto original publicado en el s. III d.C.
  • C.G.J. Jacobi (1865): De investigando ordine systematis aequationum differentialium vulgarium cujuscunque. Journal Borchardt Journal für die reine und angewandte Mathematik 64, pp. 297–320.
  • C.G.J. Jacobi (1866): De aequationum differentialium systemate non normali ad formam normalem revocando. En A. Clesch (ed.): Vorlesungen über Dynamik von C.G.J. Jacobi nebstes fünf hinterlassenen Abhandlungen desselben, Druck und Verlag von Georg Reimer: Berlin, pp. 550–578.
  • C. Jordan (1870): Traité des substitutions et des équations algébriques, Gauthiers-Villars: París.
  • E.L. Ince (1956): Ordinary Differential Equations, Dover: New York.
  • M. Kline (1972a): Mathematical thought from ancient to modern times Vol. I, Oxford University Press: New York.
  • M. Kline (1972b): Mathematical thought from ancient to modern times Vol. II, Oxford University Press: New York.
  • T. Koopmans (1965): On the concept of optimal economic growth. Pontificiae Academiae Scientiarum Scripta Varia 28, pp. 225–300.
  • J.L Lagrange (1766): Recherches sur les inégalités des satellites de Jupiter causées par leur attraction mutuelle. Pièces de prix de l'Acad. de Sc. de Paris. T. 9. Mem., pp. 6–29.
  • J.L. Lagrange (1785): Recherches sur la theorie des perturbations que les comètes peuvent eprouver par l'action des planètes, Moutard: París.
  • J.L. Lagrange (1804): Leçons sur le calcul des fonctions. J. École Polytech. 5, pp. 1–90.
  • P.S. Laplace (1771): Recherches sur le calcul intégral aux différences infiniment petites, et aux différences finies. Mél. Phil. Math. Soc. Roy. Turin, années 1766-1769 (Miscellanea Taurensia IV), pp. 273–345.
  • P.S. Laplace (1777): Recherches sur le calcul intégral aux différences partielles. Histoire Acad. Royale Sci. París année 1773, pp. 341–402.
  • P.S. Laplace (1785): Mémoire sur les approximations des formules qui sont fonctions de trés grands nombres. Mém. Acad. Royale Sci. Paris, année 1782.
  • G.W. Leibinz (1684): Nova methodus pro maximis et minimis, itemquetangentibus, quae nec fractas nec irationales quantitates moratur, et singulare proillis calculi genus. Acta Eruditorum Lipsiae MDCLXXXIV, pp. 467–473.
  • G.W. Leibniz (1686): De geometria recondita et analysi indivisibilium atque infinitorum. Acta Eruditorum Lipsiae MDCLXXXVI, pp. 292–300.
  • V. Ly Vath, M. Mnif, H. Pham (2007): A model of portfolio selection under liquidity risk and price impact. Finance and Stochastics 11, pp. 51–90.
  • G. Manfredi (1707): De constructione aequationum differentialium primi gradus, C. Pifarii: Bolonia.
  • R. Merton (1969): Lifetime portfolio selection under uncertainty: the continuous-time case. Review of Economics and Statistics 51, pp. 247–257.
  • R.C. Merton (1973): Theory of rational option pricing. Bell Journal of Economics and Management Science 4, pp. 141–183.
  • R.A. Mundell (1963): Capital mobility and stabilization policy under fixed and flexible exchange rates. Canadian Journal of Economics and Political Science 29, pp. 475–485.
  • R.A. Mundell (1964): A reply: Capital mobility and size. Canadian Journal of Economics and Political Science 30, pp. 421–431.
  • M. Musiela, T. Zariphopoulou (2010): Stochastic Partial Differential Equations and Portfolio Choice. En C. Chiarella, A. Novikov (eds.): Contemporary Quantitative Finance. Springer-Verlag: Berlín, pp. 195–216.
  • M. Musiela, T. Zariphopoulou (2011): Initial investment choice and optimal future allocations under time-monotone performance criteria. International Journal of Theoretical and Applied Finance 14, pp. 61–81.
  • I. Newton (1687): Philosophiae naturalis principia mathematica, Pepys: Londres.
  • I. Newton (1736): Method of fluxions and infinite series, Woodfall: Londres.
  • R. Norberg (1991): Reserves in life and pension insurance. Scandinavian Actuarial Journal 2013, pp. 3–24.
  • R. Norberg (1999): A theory of bonus in life insurance. Finance and Stochastics 3, pp. 373–390.
  • R. Norberg (2001): On bonus and bonus prognoses in life insurance. Scandinavian Actuarial Journal 2001, pp. 126–147.
  • M. Obstfeld, K. Rogoff (1995): Exchange rate dynamics redux. Journal of Political Economy 103, pp. 624–660.
  • M. Obstfeld, K. Rogoff (1996): Foundations of International Macroeconomics, MIT Press: Massachusetts.
  • B. Oksendal (1985): Stochastic Differential Equations, Springer: Berlin.
  • B. Pascal (1665): Traité du triangle, Desprez: París.
  • E. Picard (1893): Traité d’Analyse. Tome II, Gauthiers-Villars: París.
  • R. Piché, J. Kanniainen (2007): Solving financial differential equations using differentiation matrices. En: S.I. Ao, L. Gelman, D.W.L. Hukins, A. Hunter, A.M. Korsunsky (eds.): Proceedings of the World Congress on Engineering 2007 Vol. II. Newswood Limited: Londres, pp. 1016–1022.
  • E. Platen, M. Schweizer (1998): On feedback effects from hedging derivatives. Mathematical Finance 8, pp. 67–84.
  • H.J. Poincaré (1890): Sur le problème des trois corps et les équations de la dynamique. Acta Mathematica 13, pp. 1–270.
  • S. Polidoro (2003): A nonlinear PDE in Mathematical Finance. En F. Brezzi, A. Buffa, S. Corsaro, A. Murli (eds.): Numerical Mathematics and Advanced Applications. Springer: Milán.
  • C. Prévôt, M. Röckner (2007): A concise course on Stochastic Partial Differential Equations. Springer: Berlin.
  • F.P. Ramsey (1928): A mathematical theory of savings. Economic Journal 38, 543–559.
  • R. Rashed (1994): The development of Arabic mathematics: between arithmetic and algebra, Kluwer Academic: Londres.
  • W.W. Rouse Ball (1960): A short account of the History of Mathematics, Dover Publications: New York.
  • T. Sauer (2012): Numerical Solutions of Stochastic Differential Equations in Finance. En J.C. Duan, W.K. Härdle, J.E. Gentle (ed.): Handbook of Computational Finance. Springer: Berlín, pp. 529–550.
  • F. Smithies (1997): Cauchy and the Creation of Complex Function Theory, Cambridge University Press: Cambridge.
  • R.M. Solow (1956): A contribution to the theory of economic growth. Quarterly Journal of Economics 70, pp. 65–94.
  • M. Steffensen (2000): A no arbitrage approach to Thiele's differential equation. Insurance: Mathematics and Economics 27, pp. 201–214.
  • M. Steffensen (2006): Surplus-linked life insurance. Scandinavian Actuarial Journal 2006, pp. 1–22.
  • M. Steffensen (2007): Differential Equations in Finance and Life Insurance. En B.S. Jensen, T. Palokangas (eds.): Stochastic Economic Dynamics. CBS press: Gylling.
  • J. Wallis (1656): Arithmetica Infinitorum, Thomas Robinson: Oxford.
  • P. Weil (1989): Overlapping families of infinitely lived agents. Journal of Public Economics 38, pp. 183–198.
  • M. Woodford (1996): Control of the public debt: A requirement for price stability? NBER Working Paper Series 5684, 35 pp.