Bifurcation Analysis of Hysteretic Systems with Saddle Dynamics

  1. Marina Esteban 1
  2. Enrique Ponce 1
  3. Francisco Torres 1
  1. 1 Universidad de Sevilla
    info

    Universidad de Sevilla

    Sevilla, España

    ROR https://ror.org/03yxnpp24

Revista:
Applied Mathematics and Nonlinear Sciences

ISSN: 2444-8656

Año de publicación: 2017

Volumen: 2

Número: 2

Páginas: 449-464

Tipo: Artículo

DOI: 10.21042/AMNS.2017.2.00036 DIALNET GOOGLE SCHOLAR

Otras publicaciones en: Applied Mathematics and Nonlinear Sciences

Resumen

This paper is devoted to the analysis of bidimensional piecewise linear systems with hysteresis coming from a reduction of symmetric 3D systems with slow-fast dynamics. We concentrate our attention on the saddle dynamics cases, determining the existence of periodic orbits as well as their stability, and possible bifurcations. Dealing with reachable saddles not in the central hysteresis band, we show the existence of subcritical/supercritical heteroclinic bifurcations as well as saddle-node bifurcations of periodic orbits.