Nanotubos de carbono como biomateriales prometedores para la regeneración del tejido óseo

  1. Patricia Antonia Lucas Rodríguez 1
  1. 1 Universidad Pablo de Olavide
    info

    Universidad Pablo de Olavide

    Sevilla, España

    ROR https://ror.org/02z749649

Revista:
MoleQla: revista de Ciencias de la Universidad Pablo de Olavide

ISSN: 2173-0903

Año de publicación: 2016

Número: 22

Tipo: Artículo

Otras publicaciones en: MoleQla: revista de Ciencias de la Universidad Pablo de Olavide

Resumen

El objetivo de la medicina regenerativa es la reparación y regeneración de los tejidos y órganos del cuerpo humano. Para ello, las terapias regenerativas utilizan células, factores de crecimiento, genes, etc. Sea cual sea el método que se utiliza, un tejido no puede regenerarse sin un “andamio”. Este consiste en una matriz porosa capaz de determinar el destino de las células y guiarlas para promover la regeneración del tejido. La fabricación de materiales que sirvan como andamios y que sean capaces de llevar a cabo esto es algo altamente deseado en el campo de la ingeniería del tejido óseo. En este artículo se analizan las características que ha de tener un andamio, así como de los rasgos y ensayos que han llevado a pensar en los nanotubos de carbono como un buen andamio para regenerar el tejido óseo.

Referencias bibliográficas

  • P.V. Giannoudis, H. Dinopoulos and E. Tsiridis, ȃ”one substitutes: an updateȄ, Injury, vol. 36, no.3, pp. S20Ȯ27, 2005, doi:10.1016/j.injury.2005.07029.
  • M.F. Pittenger, ȃMultilineage potential of adult human mesenchymal stem cellsȄ, Science, vol. 284, no. 5411, pp. 143-147, 1999, doi: 10.1126/science.284.5411.143.
  • M.J. Yaszemski, R.G. Payne, W.C. Hayes, R. Langer and A.G. Mikos, ȃEvolution of bone transplantation: molecular, cellular and tissue strategies to engineer human boneȄ, Biomaterials, vol.17, no. 2, pp. 175-185, 1996, doi: 10.1016/0142-9612(96)85762-0.
  • E.D. Arrington, W.J. Smith, H.G. Chambers, A.L. Bucknell and N.“. Davino, ȃComplications of iliac crest bone graft harvestingȄ,ClinOrthopRelatRes.,vol.329,pp.300Ȯ309,1996.
  • R. Langer and J.P. Vacanti, ȃTissue engineeringȄ, Science, vol. 260, no. 5110, pp. 920-926, 1993, doi: 10.1126/science.8493529.
  • F.M. Tonelli, A.K. Santos, K.N. Gomes, E. Lorençon, S. Guatimosim, L.O. Ladeira and R.R. Resende, ȃCarbon nanotube interaction with extracelular matriz proteins producing scaffolds for tissue engineeringȄ, Int J Nanomedicine, vol. 7, pp. 4511-29, 2012, doi: 10.2147/IJN.S33612.
  • Z.J. Han, A.E. Rider, M. Ishaq, S. Kumar, A. Kondyurin, M.M. ”ilek, I. Levchenko and K. Ostrikov, ȃCarbon nanostructures for hard tissue engineeringȄ, RSC Adv., vol. 3, pp. 11058-11072, 2013,doi:10.1039/C2RA23306A.
  • M. Riaz, A. Fulati, G. Amin, N.H. Alvi, O. Nur and M. Willander, ȃ”uckling and elastic stability of vertical ZnO nanotubes and nanorodsȄ, J. Appl. Phys., vol. 106, pp. 121-127, 2009, doi: 10.1063/1.3190481.
  • E.W. Wong, P.E. Sheeran and C.M. Lieber, ȃNanobeam mechanics: elasticity, strength and toughness of nanorods and nanotubesȄ, Science, vol. 277, no. 5334, pp. 1971-1975, 1997, doi: 10.1126/science.277.5334.1971
  • I.A.A.C. Esteves, F.J.A.L. Cruz, E.A. Müller, S. Agnihotri and J.P.”. Mota, ȃDetermination of the surface area and porosity of carbon nanotube bundles from a Langmuirian analysis of suband supercritical adsorption dataȄ, Carbon, vol. 47, no. 4, pp. 948-956, 2009, doi:10.1016/j.carbon.2008.11.044.
  • E. Hirata, M. Uo, Y. Nodasaka, et al., ȃ3D collagen scaffolds coated with multiwalled carbon nanotubes Ȯ initial cell attachment to internal surfaceȄ, J Biomed Mater Res., vol. 93, no. 2, pp. 544-550, 2010, doi: 10.1002/jbm.b.31613.
  • X. Liu, H. Liu, X. Niu, et al., ȃThe use of carbon nanotubes to induce osteogenic differentiation of human adipose-derived MSCs in vitro and ectopic bone formation in vivoȄ, Biomaterials, vol. 33, no. 19, pp. 4818-4827, 2012, doi: 10.1016/j.biomaterials.2012.03.045.
  • S.V. Dorozhkin, E. I. Dorozhkina and M. Epple, ȃ“ model system to provide a good in vitro simulation of biological mineralizationȄ. Cryst. Growth Des., vol. 4, pp. 389, 2004, doi: 10.1021/cg034066s.
  • T. Akasaka, F. Warari, Y. Sato and K. Tohji, ȃ“patite formation on carbon nanotubesȄ, Material Science and Engineering, vol. 26, 53 no. 4, pp. 675-678, 2006, doi:10.1016/j.msec.2005.03.009.
  • P.R. Supronowicz, P.M. Ajayan, K.R. Ullmann, B.P. Arulanandam, D.W. Metzger and R.J. Bizios, ȃNovel current-conducting composite substrates for exposing osteoblasts to alternating current stimulationȄ, Biomed Mater Res., vol. 59, no. 3, pp. 499-506, 2002, doi: 10.1002/jbm.10015
  • D. Depan and R.D.K. Misra, ȃProcessingȮstructureȮfunctional property relationship in organicȮinorganic nanostructured scaffolds for bone-tissue engineering: The response of preosteoblastsȄ, J Biomed Mater Res A, vol. 100, no. 11, pp. 3080-91, 2012, doi:10.1002/jbm.a.34245.
  • A. Abarrategi, M.C. Gutierrez, C. Moreno-Vicente, et al., ȃMultiwall carbon nanotube scaffolds for tissue engineering purposesȄ, Biomaterials, vol. 29, no. 1, pp. 94-102, 2008, doi:10.1016/j.biomaterials.2007.09.021.
  • S. R. Shin, H. Bae, J. M. Cha, J. Y. Mun, Y.-C. Chen, H. Tekin, H. Shin, S. Farshchi, M. R. Dokmeci, S. Tang and A. Khademhosseini, ȃCarbon nanotube reinforced hybrid microgels as scaffold materials for cell encapsulationȄ, ACS Nano., vol. 6, no. 1, pp. 362-72, 2012, doi: 10.1021/nn203711s.
  • S.K. Yadav, T. Bera, P.S. Saxena, A.K. Maurya, R.S. Garbyal, R. Vajtai, P. Ramachandrarao and “. Srivastava, ȃMWCNTs as reinforcing agent to the HapȮGel nanocomposite for artificial bone graftingȄ, J. Biomed. Mater. Res. A, vol. 93, no. 3, pp. 886-96, 2010, doi: 10.1002/jbm.a.32581.
  • Z. Tosun and P.S. McFetridge, ȃ“ composite SWNTȮcollagen matrix: characterization and preliminary assessment as a conductive peripheral nerve regeneration matrixȄ, J. Neural Eng., vol. 7, no. 6, pp. 31-41, 2010, doi: 10.1088/1741-2560/7/6/066002.
  • E.E. da Silva, H.H.M. Della Colleta, A.S. Ferlauto, R.L. Moreira, R.R. Resende, S. Oliveira, G.T. Kitten, R.G. Lacerda and L.O. Ladeira, ȃNanostructured 3-D collagen/nanotube biocomposites for future bone regeneration scaffoldsȄ, Nano Res., vol. 2, no. 6, pp. 462-473, 2010, doi: 10.1007/s12274-009-9042-7
  • S. Namgung, T. Kim, K. Y. Baik, M. Lee, J.-M. Nam and S. Hong, ȃ FibronectinȮcarbon-nanotube hybrid nanostructures for controlled cell growthȄ, Small, vol. 7, no. 1, pp. 56-61, 2011, doi: 10.1002/smll.201001513.
  • W. Tutak, M. Chhowalla and F. Sesti, ȃThe chemical and physical characteristics of single-walled carbon nanotube film impact on osteoblastic cell responseȄ, Nanotechnology, vol. 21, no. 31, 2010,doi:10.1088/0957-4484/21/31/315102.
  • K.L. Elias, R.L. Price and T.J. Webster, ȃEnhanced functions of osteoblasts on nanometer diameter carbon fibersȄ, Biomaterials, vol. 23, no. 15, pp. 3279-87, 2002, doi: 10.1016/S0142-9612(02)00087-X.
  • E. “xpe, L. ”ugnicourt, D. Merida, et al., ȃSub-nanoscale free volume and local elastic modulus of chitosan/carbon nanotube biomimetic nanocomposite scaffold-materialsȄ, Journal of Materials Chemistry B, vol. 3, pp. 3169-3176, 2015, doi: 10.1039/x0xx00000x.
  • Y. Usui, K. “oki, N. Narita, et al., ȃCarbon nanotubes with high bone-tissue compatibility and bone-formation acceleration effectsȄ, Small, vol. 4, no. 2, pp. 240-6, 2008, doi: 10.1002/smll.200700670.
  • A. Abarrategi, M.C. Gutierrez, C. Moreno-Vicente, M.J. Hortiguela, V. Ramos, J.L. Lopez-Lacomba, M.L. Ferrer and F. del Monte, ȃMultiwall carbon nanotube scaffolds for tissue engineering purposesȄ, Biomaterials, vol. 29, no. 1, pp. 94-102, 2008, doi: 10.1016/j.biomaterials.2007.09.021.
  • M. Bhattacharya, P. Wutticharoenmongko-Thitiwongsawet, D.T. Hamamoto, D. Lee, T. Cui, H.S. Prasad and M. “hmad, ȃ”one formation on carbon nanotube compositeȄ, J. Biomed. Mater. Res. A, vol. 96, no. 1, pp. 75-82, 2011, doi: 10.1002/jbm.a.32958.
  • T. Kasai, S. Matsumura, T. Iizuka, K. Shiba, T. Kanamori, M. Yudasaka, S. Iijima and “. Yokoyama, ȃCarbon nanohorns accelerate bone regeneration in rat calvarial bone defectȄ, Nanotechnology, vol. 22, no. 6, pp. 065102, 2011, doi: 10.1088/0957-4484/22/6/065102.
  • Y. Usui, K. “oki, N. Narita, et al., ȃCarbon nanotubes with high bone-tissue compatibility and bone-formation acceleration effectsȄ, Small, vol. 4, no. 2, pp. 240-6, 2008, doi: 10.1002/smll.200700670.
  • E. Mooney, P. Dockery, U. Greiser, M. Murphy and V. Barron, ȃCarbon nanotubes and mesenchymal stem cells: biocompatibility, proliferation and differentiationȄ, Nano Lett., vol. 8, no. 8, pp. 2137-43, 2008, doi: 10.1021/nl073300o.
  • Z. J. Han, I. Levchenko, S. Kumar, M. M. A. Yajadda, S. Yick, D. H. Seo, P.J. Martin, S. Peel, Z. Kuncic and K. Ostrikov, ȃPlasma nanofabrication and nanomaterials safetyȄ, J. Phys. D: Appl. Phys., vol. 44, no. 17, 2011, doi: 10.1088/0022-3727/44/17/174019
  • M. G. Kong, M. Keidar and K. Ostrikov, ȃPlasmas meet nanoparticlesȯwhere synergies can advance the frontier of medicineȄ, J. Phys. D: Appl. Phys., vol. 44, no. 17, 2011, doi: 10.1088/0022-3727/44/17/174018.
  • D. Liu, C. Yi, D. Zhang, J. Zhang and M. Yang, ȃInhibition of proliferation and differentiation of mesenchymal stem cells by carboxylated carbon nanotubesȄ, ACS Nano, vol. 4, no. 4, pp. 2185-95, 2010, doi: 10.1021/nn901479w.
  • Q. Mu, G. Du, T. Chen, B. Zhang and ”. Yan, ȃSuppression of human bone morphogenetic protein signaling by carboxylated single-walled carbon nanotubesȄ, ACS Nano, vol. 3, no. 5, pp. 1139-44, 2009, doi: 10.1021/nn900252j.
  • T. R. Nayak, L. Jian, L. C. Phua, H. K. Ho, Y. Ren and G. Pastorin, ȃThin films of functionalized multiwalled carbon nanotubes as suitable scaffold materials for stem cells proliferation and bone formationȄ, ACS Nano, vol. 4, no. 12, pp. 7717-25, 2010, doi:10.1021/nn10273