Structural Features and Zeolite Stability: A Linearized Equation Approach

  1. Salvador R.G. Balestra 1
  2. Noelia Rodríguez-Sánchez 1
  3. Dayrelis Mena-Torres 1
  4. A. Rabdel Ruiz-Salvador 1
  1. 1 Universidad Pablo de Olavide
    info

    Universidad Pablo de Olavide

    Sevilla, España

    ROR https://ror.org/02z749649

Revue:
Crystal Growth & Design

ISSN: 1528-7483 1528-7505

Année de publication: 2024

Volumen: 24

Número: 3

Pages: 938-946

Type: Article

DOI: 10.1021/ACS.CGD.3C00893 GOOGLE SCHOLAR lock_openAccès ouvert editor

D'autres publications dans: Crystal Growth & Design

Objectifs de Développement Durable

Résumé

Zeolite stability, in terms of lattice energy, is revisited from a crystal-chemistry point of view. A linearized equation relates the zeolite lattice energy using simple structural data readily available from experiments or modeling. The equation holds for a large range of zeolite energies, up to 3 eV per tetrahedron with respect to quartz, and has been validated internally via two simple machine learning automatic procedures for data fitting/reference partitions and externally using data from recently synthesized zeolites. The approach is certain in locating those recently synthesized zeolites in the energy range of those experimentally known zeolites used in the parametrization of the linearized equation. Hidden intrinsic structural data–energy correlations were found for data sets built from energy-relaxed structures along with energy values computed using the same energy functions employed in the structural relaxation. The asymmetry of the structural features is relevant for an accurate description of the energy.

Références bibliographiques

  • 10.1038/s41578-021-00347-3
  • 10.1021/acs.chemrev.2c00140
  • 10.1038/s41467-021-22936-0
  • 10.1039/D0CS01459A
  • 10.1016/j.cplett.2014.11.044
  • 10.1063/1.4981528
  • 10.1016/j.micromeso.2022.112382
  • 10.1039/c39900000782
  • 10.1039/B208064H
  • 10.1039/a909671j
  • 10.1039/b009623g
  • 10.1002/anie.200352364
  • 10.1039/B304332K
  • Modelling the effect of water on cation exchange in zeolite A. J. Mater. Chem. 2002, 12, 124–131, 10.1039/b104069n.
  • 10.1021/jp034151a
  • 10.1039/B607030B
  • 10.1021/jp909355e
  • 10.1021/acs.chemmater.5b02103
  • 10.1007/s00214-017-2143-6
  • 10.1038/s41524-022-00865-w
  • 10.1021/cm049256k
  • 10.1016/0144-2449(89)90079-1
  • 10.1021/cm00046a015
  • 10.1021/cm9503238
  • 10.1021/ja905009e
  • 10.1039/b912997a
  • 10.1098/rspa.2022.0201
  • 10.1021/jp0531309
  • 10.1021/jp060505x
  • 10.1021/cm00036a019
  • 10.1021/jp909348s
  • 10.1002/anie.201206340
  • 10.1021/acs.jpclett.9b00136
  • 10.1515/zkri-2014-1801
  • 10.1039/C6CP06217B
  • 10.1515/zkri-2018-2155
  • 10.1021/acs.cgd.6b00272
  • 10.1021/acs.cgd.7b01410
  • 10.1063/1.5119751
  • 10.1039/D0SC03918G
  • 10.1021/acs.jpcc.9b10514
  • 10.1021/acs.chemrev.0c00004
  • 10.1039/D2DD00056C
  • 10.1016/S0926-860X(03)00284-9
  • 10.1016/j.micromeso.2008.07.027
  • 10.1039/c0cp02255a
  • 10.1021/jp107296e
  • Gao, Z. R.; Yu, H.; Chen, F.J.; Li, X.; Mayoral, A.; Niu, Z.; Niu, Z.; Deng, H.; Márquez-Álvarez, C.; He, H.; Xu, H.; Fan, W.; Balestra, S. R. G.; Li, J.; Wu, P.; Yu, J.; Camblor, M. A. Interchain Expanded Extra-Large Pore Zeolites. ChemRxiv 2023. 10.26434/chemrxiv-2023-ttqvd. (accessed 2023–04–10).
  • Baerlocher, Ch.; McCusker, L. B. Database of Zeolite Structures. http://www.iza-structure.org/databases/. (accessed 2022–01–18).
  • 10.1039/a606455h
  • Gale, J. D.; Rohl, A. L. The General Utility Lattice Program (GULP). 2011, 29 (5), 291–341. 10.1080/0892702031000104887.
  • 10.1016/S0081-1947(08)60515-9
  • 10.1090/S0025-5718-1970-0274029-X
  • 10.1021/j100238a013
  • 10.1039/JM9960601837
  • 10.1039/c39840001271
  • 10.1021/jp046958o
  • Baerlocher, C.; Hepp, A.; Meier, W. M. DLS-76, a FORTRAN Program for the Simulation of Crystal Structures by Geometric Refinement. Institut fur Kristallographie und Petrographie, ETH: Zurich, Switzerland,1978.
  • 10.1016/S0167-2991(07)80906-2
  • 10.1021/ar800124u
  • 10.1021/jacs.5b08098
  • Frank, Eibe; Hall, Mark A.; Witten, Ian H. Data Mining: Practical Machine Learning Tools and Techniques. In The WEKA Workbench; Morgan Kaufmann, 4th Edition, 2016.
  • 10.1109/TAC.1974.1100705
  • 10.1038/nature14575
  • 10.1021/acs.chemmater.1c00892
  • 10.1126/science.abk3258
  • 10.1039/D2SC03628B
  • 10.1021/acs.chemmater.8b03311
  • 10.1126/science.ade1771
  • 10.3390/chemistry5020052
  • 10.1002/anie.202217004
  • 10.1002/anie.201912488
  • 10.1039/D0CC06086K
  • 10.1002/anie.202100822
  • 10.1039/D0CC07333D