Bases de la respuesta a estrés salino en la levadura debaryomyces hansenii

  1. Ruiz Pérez, Francisco Solano
Dirigida por:
  1. José Ramos Ruiz Director/a

Universidad de defensa: Universidad de Córdoba (ESP)

Fecha de defensa: 15 de diciembre de 2023

Tribunal:
  1. Manuel Benlloch Marín Presidente/a
  2. Carmen Michán Doña Secretario/a
  3. Francisco Javier Quintero Toscano Vocal

Tipo: Tesis

Resumen

1. Introducción o motivación de la tesis: La mayoría de los seres vivos son sensibles a altas concentraciones de sal, sin embargo, la capacidad de resistir e incluso proliferar en ambientes con baja actividad hídrica debido a una alta concentración de sal en el medio se encuentra ampliamente distribuida en los microorganismos como son, las bacterias, las arqueas y levaduras. En estos grupos es frecuente encontrar especies halotolerantes o halófilas. La necesidad y el interés en la investigación de los efectos del estrés salino y de mecanismos de respuesta se ha incrementado a lo largo de los años. Las levaduras han sido utilizadas como modelo de estudio en estas investigaciones, especialmente, la levadura Saccharomyces cerevisiae. Sin embargo, cada vez se opta más por utilizar las levaduras conocidas como no convencionales, entre ellas Debaryomyces hansenii, debido, por una parte, a las características específicas de estas levaduras y, por otra, por el desarrollo de herramientas moleculares que han propiciado el aprovechamiento del potencial biotecnológico de las levaduras pertenecientes a este grupo. Debaryomyces hansenii es una levadura osmo-, xero- y generalmente considera halotolerante, aunque hay autores que la describen como halófila, que se ha ido utilizado cada vez más frecuentemente como organismo modelo en estudios de estrés salino. Esta levadura posee una serie de adaptaciones que, a pesar de estar presente en la mayoría de las levaduras, proporcionan a Debaryomyces hansenii una mayor tolerancia a la sal que, por ejemplo, a S. cerevisiae. Por otra parte, el metabolismo y el efecto de sal sobre este se encuentra poco estudiado en esta levadura y, además, no es posible obtener conclusiones claras de los pocos estudios realizados debido a las múltiples contradicciones entre los diferentes autores derivadas de la poca homogeneidad de los ensayos realizados. Entre los autores cabe destacar los trabajos del Dr. Antonio Peña de la Universidad de Méjico, en los que se propone que Debaryomyces hansenii posee una capacidad fermentativa y la activación del ciclo del ácido glioxílico en presencia de sal. Este último hecho no ha sido estudiado por autores posteriores. La respuesta al estrés salino constituye un sistema complejo en el que varios elementos se ven implicados, a pesar de los recientes avances realizados en la adaptación de la metodología, y de los resultados obtenidos en los últimos estudios, todavía quedan aspectos por conocer del efecto de las diferentes sales sobre D. hansenii. 2.Contenido de la investigación: En este trabajo se pretende obtener información sobre los diferentes factores implicados en la respuesta a estrés salino en Debaryomyces hansenii, con esta finalidad, en la presente tesis doctoral, se ha abarcado los siguientes contenidos: 1. Se ha determinado el efecto de la salinidad inducida por sodio o litio sobre diferentes procesos fisiológicos y sobre la homeostasis iónica en D. hansenii. 2. Se ha estudiado la influencia del pH, sobre la tolerancia a sodio y litio. 3. Se ha Analizado aspectos básicos del metabolismo de D. hansenii en presencia de sal, como es el consumo de glucosa o la capacidad fermentativa. 4.Se ha determinado cambios en las diferentes rutas metabólicas en respuesta al estrés salino inducido por sodio y litio. 3.Conclusión: 1.El litio, al contrario que el sodio y el potasio, es un elemento tóxico, incluso, en concentraciones muy bajas tanto extracelular como intracelularmente. Sin embargo, no parece producir un daño letal a las células, sino que inhibiría su capacidad de proliferación. 2.La presencia de una concentración de 0,5 M de sodio en el medio favorece el crecimiento de la levadura. Sin embargo, concentraciones más altas de este catión son perjudiciales para la levadura. 3.El sodio, al igual que el potasio, ejerce un efecto protector frente a la toxicidad del litio. 4.El pH no afecta de forma importante al efecto beneficioso de sodio y la toxicidad del litio. 5.La capacidad fermentativa de la cepa CBS767 de D. hansenii es nula tanto en presencia como ausencia de sal en el medio. 6.El sodio influye negativamente a la actividad de enzimas relacionadas con las primeras etapas de la glucólisis, mientras que, una concentración relativamente baja de litio afecta de forma positiva a estas enzimas. 7.La presencia de sodio en el medio induce un cambio en el patrón metabólico a favor del ciclo del ácido glioxílico. 8.Al contrario que el sodio, el litio favorece el flujo metabólico hacía el ciclo de Krebs. 4. Bibliografía: - Adler, L., Blomberg, A., & Nilsson, A. (1985). Glycerol metabolism and osmoregulation in the salt-tolerant yeast Debaryomyces hansenii. Journal of Bacteriology, 162(1), 300-306. https://doi.org/10.1128/jb.162.1.300-306.1985 - Aggarwal, M., Bansal, P. K., & Mondal, A. K. (2005). Molecular cloning and biochemical characterization of a 3¿(2¿),5¿-bisphosphate nucleotidase from Debaryomyces hansenii. Yeast, 22(6), 457-470. https://doi.org/10.1002/yea.1223 - Ahn, S., Jung, J., Jang, I.-A., Madsen, E. L., & Park, W. (2016). Role of Glyoxylate Shunt in Oxidative Stress Response. The Journal of Biological Chemistry, 291(22), 11928-11938. https://doi.org/10.1074/jbc.M115.708149 - Almagro, A., Prista, C., Benito, B., Loureiro-Dias, M. C., & Ramos, J. (2001). Cloning and Expression of Two Genes Coding for Sodium Pumps in the Salt-Tolerant Yeast Debaryomyces hansenii. Journal of Bacteriology, 183(10), 3251-3255. https://doi.org/10.1128/JB.183.10.3251-3255.2001 - Almagro, A., Prista, C., Castro, S., Quintas, C., Madeira-Lopes, A., Ramos, J., & Loureiro-Dias, M. C. (2000). Effects of salts on Debaryomyces hansenii and Saccharomyces cerevisiae under stress conditions. International Journal of Food Microbiology, 56(2), 191-197. https://doi.org/10.1016/S0168-1605(00)00220-8 - Andrade, M. A. J., Córdoba, J. J., Casado, E. M. A., Córdoba, M. G., & Rodríguez, M. (2010). Effect of selected strains of Debaryomyces hansenii on the volatile compound production of dry fermented sausage «salchichón». Meat Science, 85(2), 256-264. https://doi.org/10.1016/j.meatsci.2010.01.009 - André, L., Nilsson, A., & Adler, L. (1988). The Role of Glycerol in Osmotolerance of the Yeast Debaryomyces hansenii. Microbiology, 134(3), 669-677. https://doi.org/10.1099/00221287-134-3-669 - Aslankoohi, E., Rezaei, M. N., Vervoort, Y., Courtin, C. M., & Verstrepen, K. J. (2015). Glycerol production by fermenting yeast cells is essential for optimal bread dough fermentation. PloS One, 10(3), e0119364. https://doi.org/10.1371/journal.pone.0119364 - Auesukaree, C. (2017). Molecular mechanisms of the yeast adaptive response and tolerance to stresses encountered during ethanol fermentation. Journal of Bioscience and Bioengineering, 124(2), 133-142. https://doi.org/10.1016/j.jbiosc.2017.03.009 - Bergmeyer H.U., Grassl, M., & Walter, H. (1985). Hexokinase. En H. U. Bergmeyer, J. Bergmeyer, & M. Grassl (Eds.), Methods on Enzymatic Analysis (Third, Vol. 2, pp. 222-223). - Bernt, E., & Bergmeyer, H. U. (1974). Malate dehydrogenase and isocitrate dehydrogenase. En H. U. Bergmeyer (Ed.), Methods of enzymatic analysis (Second). Academic Press. - Bolumar, T., Sanz, Y., Aristoy, M.-C., & Toldrá, F. (2003). Purification and Characterization of a Prolyl Aminopeptidase from Debaryomyces hansenii. Applied and environmental microbiology, 69, 227-232. https://doi.org/10.1128/AEM.69.1.227-232.2003 - Braconi, D., Bernardini, G., & Santucci, A. (2016). Saccharomyces cerevisiae as a model in ecotoxicological studies: A post-genomics perspective. Journal of Proteomics, 137, 19-34. https://doi.org/10.1016/j.jprot.2015.09.001 - Breuer, U., & Harms, H. (2006). Debaryomyces hansenii¿An extremophilic yeast with biotechnological potential. Yeast (Chichester, England), 23(6), 415-437. https://doi.org/10.1002/yea.1374 - Butinar, L., Santos, S., Spencer-Martins, I., Oren, A., & Gunde-Cimerman, N. (2005). Yeast diversity in hypersaline habitats. FEMS Microbiology Letters, 244(2), 229-234. https://doi.org/10.1016/j.femsle.2005.01.043 - Butler, G., Rasmussen, M., Lin, M., Sakthikumar, S., Munro, C., Rheinbay, E., Grabherr, M., Forche, A., Reedy, J., Agrafioti, I., Arnaud, M., Bates, S., Brown, A., Brunke, S., Costanzo, M., Fitzpatrick, D., Groot, P., Harris, D., & Cuomo, C. (2009). Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature, 459, 657-662. https://doi.org/10.1038/nature08064 - Calahorra, M., Sánchez, N. S., & Peña, A. (2009). Activation of fermentation by salts in Debaryomyces hansenii. FEMS Yeast Research, 9(8), 1293-1301. https://doi.org/10.1111/j.1567-1364.2009.00556.x - Cebrián, E., Núñez, F., Álvarez, M., Roncero, E., & Rodríguez, M. (2022). Biocontrol of ochratoxigenic Penicillium nordicum in dry-cured fermented sausages by Debaryomyces hansenii and Staphylococcus xylosus. International Journal of Food Microbiology, 375, 109744. https://doi.org/10.1016/j.ijfoodmicro.2022.109744 - Chell, R. M., Sundaram, T. K., & Wilkinson, A. E. (1978). Isolation and characterization of isocitrate lyase from a thermophilic Bacillus sp. Biochemical Journal, 173(1), 165-177. - Chen, Z., Cuin, T. A., Zhou, M., Twomey, A., Naidu, B. P., & Shabala, S. (2007). Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. Journal of Experimental Botany, 58(15-16), 4245-4255. https://doi.org/10.1093/jxb/erm284 - Chew, S. Y., Chee, W. J. Y., & Than, L. T. L. (2019). The glyoxylate cycle and alternative carbon metabolism as metabolic adaptation strategies of Candida glabrata: Perspectives from Candida albicans and Saccharomyces cerevisiae. Journal of Biomedical Science, 26(1), 52. https://doi.org/10.1186/s12929-019-0546-5 - Cross, C. E., Halliwell, B., Borish, E. T., Pryor, W. A., Ames, B. N., Saul, R. L., McCord, J. M., & Harman, D. (1987). Oxygen radicals and human disease. Annals of Internal Medicine, 107(4), 526-545. https://doi.org/10.7326/0003-4819-107-4-526 - Csutora, P., Strassz, A., Boldizsár, F., Németh, P., Sipos, K., Aiello, D. P., Bedwell, D. M., & Miseta, A. (2005). Inhibition of phosphoglucomutase activity by lithium alters cellular calcium homeostasis and signaling in Saccharomyces cerevisiae. American Journal of Physiology. Cell Physiology, 289(1), C58-67. https://doi.org/10.1152/ajpcell.00464.2004 - Dichtl, B., Stevens, A., & Tollervey, D. (1997). Lithium toxicity in yeast is due to the inhibition of RNA processing enzymes. The EMBO Journal, 16(23), 7184-7195. https://doi.org/10.1093/emboj/16.23.7184 - Dolan, S. K., & Welch, M. (2018). The Glyoxylate Shunt, 60 Years On. Annual Review of Microbiology, 72(1), 309-330. https://doi.org/10.1146/annurev-micro-090817-062257 - Fan, T., Wang, M., Li, J., Wang, F., Zhang, Z., & Zhao, X.-Q. (2021). [Exploration of yeast biodiversity and development of industrial applications]. Sheng Wu Gong Cheng Xue Bao = Chinese Journal of Biotechnology, 37(3), 806-815. https://doi.org/10.13345/j.cjb.200650 - Fiske, C. H., & Subbarow, Y. (1925). The colorimetric determination of phosphorous. Journal of Biological Chemistry, 66(2), 375-400. https://doi.org/10.1016/S0021-9258(18)84756-1 - Fleet, G. H. (1990). Yeasts in dairy products. The Journal of Applied Bacteriology, 68(3), 199-211. https://doi.org/10.1111/j.1365-2672.1990.tb02566.x - Flores, C., Rodríguez, C., Petit, T., & Gancedo, C. (2000). Carbohydrate and energy-yielding metabolism in non-conventional yeasts. FEMS Microbiology Reviews, 24, 507-529. https://doi.org/10.1111/j.1574-6976.2000.tb00553.x - Gancedo, C., & Serrano, R. (1989). Energy-Yielding Metabolism. En A. H. Rose & J. S. Harrison (Eds.), The yeast (2nd ed., Vol. 3, pp. 205-259). Academic Press. - Garcia-Neto, W., Cabrera-Orefice, A., Uribe-Carvajal, S., Kowaltowski, A. J., & Alberto Luévano-Martínez, L. (2017). High Osmolarity Environments Activate the Mitochondrial Alternative Oxidase in Debaryomyces Hansenii. PLoS ONE, 12(1), e0169621. https://doi.org/10.1371/journal.pone.0169621 - Gläser, H. U., Thomas, D., Gaxiola, R., Montrichard, F., Surdin-Kerjan, Y., & Serrano, R. (1993). Salt tolerance and methionine biosynthesis in Saccharomyces cerevisiae involve a putative phosphatase gene. The EMBO Journal, 12(8), 3105-3110. - González-Hernández, J. C., Jiménez-Estrada, M., & Peña, A. (2005). Comparative analysis of trehalose production by Debaryomyces hansenii and Saccharomyces cerevisiae under saline stress. Extremophiles: Life Under Extreme Conditions, 9(1), 7-16. https://doi.org/10.1007/s00792-004-0415-2 - González-Hernández, J., & Peña, A. (2002). Adaptation strategies of halophilic microorganisms and Debaryomyces hansenii halophilic yeast. Revista latinoamericana de microbiología, 44, 137-156. - Goold, H. D., Kroukamp, H., Williams, T. C., Paulsen, I. T., Varela, C., & Pretorius, I. S. (2017). Yeast¿s balancing act between ethanol and glycerol production in low-alcohol wines. Microbial Biotechnology, 10(2), 264-278. https://doi.org/10.1111/1751-7915.12488 - Gori, K., Hébraud, M., Chambon, C., Mortensen, H. D., Arneborg, N., & Jespersen, L. (2007). Proteomic changes in Debaryomyces hansenii upon exposure to NaCl stress. FEMS Yeast Research, 7(2), 293-303. https://doi.org/10.1111/j.1567-1364.2006.00155.x - Gunde-Cimerman, N., Ramos, J., & Plemenitaš, A. (2009). Halotolerant and halophilic fungi. Mycological Research, 113(11), 1231-1241. https://doi.org/10.1016/j.mycres.2009.09.002 - Herrera, R., Salazar, A., Ramos-Moreno, L., Ruiz-Roldan, C., & Ramos, J. (2017). Vacuolar control of subcellular cation distribution is a key parameter in the adaptation of Debaryomyces hansenii to high salt concentrations. Fungal Genetics and Biology, 100, 52-60. https://doi.org/10.1016/j.fgb.2017.02.002 - Hohmann, S., & Mager, W. H. (Eds.). (2003). Yeast Stress Responses (Vol. 1). Springer. https://doi.org/10.1007/3-540-45611-2 - Isayenkov, S. V. (2012). Physiological and molecular aspects of salt stress in plants. Cytology and Genetics, 46(5), 302-318. https://doi.org/10.3103/S0095452712050040 - Kamlesh, K. Y., Singh, N., & Rajasekharan, R. (2016). Responses to phosphate deprivation in yeast cells. Current Genetics, 62(2), 301-307. https://doi.org/10.1007/s00294-015-0544-4 - Kodedová, M., & Sychrová, H. (2015). Changes in the Sterol Composition of the Plasma Membrane Affect Membrane Potential, Salt Tolerance and the Activity of Multidrug Resistance Pumps in Saccharomyces cerevisiae. PLOS ONE, 10(9), e0139306. https://doi.org/10.1371/journal.pone.0139306 - Koedooder, C., Guéneuguès, A., Van Geersdaële, R., Vergé, V., Bouget, F.-Y., Labreuche, Y., Obernosterer, I., & Blain, S. (2018). The Role of the Glyoxylate Shunt in the Acclimation to Iron Limitation in Marine Heterotrophic Bacteria. Frontiers in Marine Science, 5. https://www.frontiersin.org/articles/10.3389/fmars.2018.00435 - Koganti, S., Kuo, T. M., Kurtzman, C. P., Smith, N., & Ju, L.-K. (2011). Production of arabitol from glycerol: Strain screening and study of factors affecting production yield. Applied Microbiology and Biotechnology, 90(1), 257-267. https://doi.org/10.1007/s00253-010-3015-3 - Kohler, J., Hernández, J. A., Caravaca, F., & Roldán, A. (2009). Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environmental and Experimental Botany, 65(2), 245-252. https://doi.org/10.1016/j.envexpbot.2008.09.008 - Kondrashov, F. A., Koonin, E. V., Morgunov, I. G., Finogenova, T. V., & Kondrashova, M. N. (2006). Evolution of glyoxylate cycle enzymes in Metazoa: Evidence of multiple horizontal transfer events and pseudogene formation. Biology Direct, 1(1), 31. https://doi.org/10.1186/1745-6150-1-31 - Kornberg, H. L. (1966). The role and control of the glyoxylate cycle in Escherichia coli. Biochemical Journal, 99(1), 1-11. - Kruger, N. J. (1994). The Bradford method for protein quantitation. Methods in Molecular Biology (Clifton, N.J.), 32, 9-15. https://doi.org/10.1385/0-89603-268-X:9 - Locascio, A., Andrés-Colás, N., Mulet, J. M., & Yenush, L. (2019). Saccharomyces cerevisiae as a Tool to Investigate Plant Potassium and Sodium Transporters. International Journal of Molecular Sciences, 20(9), E2133. https://doi.org/10.3390/ijms20092133 - Lorenz, M. C., & Fink, G. R. (2001). The glyoxylate cycle is required for fungal virulence. Nature, 412(6842), 83-86. https://doi.org/10.1038/35083594 - Ma, D., & Li, R. (2013). Current understanding of HOG-MAPK pathway in Aspergillus fumigatus. Mycopathologia, 175(1-2), 13-23. https://doi.org/10.1007/s11046-012-9600-5 - Ma, N., Li, C., Dong, X., Wang, D., & Xu, Y. (2015). Different effects of sodium chloride preincubation on cadmium tolerance of Pichia kudriavzevii and Saccharomyces cerevisiae. Journal of Basic Microbiology, 55(8), 1002-1012. https://doi.org/10.1002/jobm.201400847 - Martínez, J. L., Luna, C., & Ramos, J. (2012). Proteomic changes in response to potassium starvation in the extremophilic yeast Debaryomyces hansenii. FEMS Yeast Research, 12(6), 651-661. https://doi.org/10.1111/j.1567-1364.2012.00815.x - Martínez, J., Sychrova, H., & Ramos, J. (2011). Monovalent cations regulate expression and activity of the Hak1 potassium transporter in Debaryomyces hansenii. Fungal genetics and biology¿: FG & B, 48, 177-184. https://doi.org/10.1016/j.fgb.2010.06.013 - Michán, C., Martínez, J. L., Alvarez, M. C., Turk, M., Sychrova, H., & Ramos, J. (2013). Salt and oxidative stress tolerance in Debaryomyces hansenii and Debaryomyces fabryi. FEMS Yeast Research, 13(2), 180-188. https://doi.org/10.1111/1567-1364.12020 - Minhas, A., Sharma, A., Kaur, H., Rawal, Y., Ganesan, K., & Mondal, A. K. (2012). Conserved Ser/Arg-rich motif in PPZ orthologs from fungi is important for its role in cation tolerance. The Journal of Biological Chemistry, 287(10), 7301-7312. https://doi.org/10.1074/jbc.M111.299438 - Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell & Environment, 25(2), 239-250. https://doi.org/10.1046/j.0016-8025.2001.00808.x - Murguía, J. R., Bellés Albert, J.-M., & Serrano, R. (1996). The yeast HAL2 nucleotidase is an in vivo target of salt toxicity. https://doi.org/10.1074/jbc.271.46.29029 - Navarrete, C., Estrada, M., & Martínez, J. L. (2022). Debaryomyces hansenii: An old acquaintance for a fresh start in the era of the green biotechnology. World Journal of Microbiology and Biotechnology, 38(6), 99. https://doi.org/10.1007/s11274-022-03280-x - Navarrete, C., Frost, A. T., Ramos-Moreno, L., Krum, M. R., & Martínez, J. L. (2021a). A physiological characterization in controlled bioreactors reveals a novel survival strategy for Debaryomyces hansenii at high salinity. Yeast, 38(5), 302-315. https://doi.org/10.1002/yea.3544 - Navarrete, C., Petrezsélyová, S., Barreto, L., Martínez, J. L., Zahrádka, J., Ariño, J., Sychrová, H., & Ramos, J. (2010). Lack of main K+ uptake systems in Saccharomyces cerevisiae cells affects yeast performance in both potassium-sufficient and potassium-limiting conditions. FEMS Yeast Research, 10(5), 508-517. https://doi.org/10.1111/j.1567-1364.2010.00630.x - Navarrete, C., Sánchez, B. J., Savickas, S., & Martínez, J. L. (2021b). DebaryOmics: An integrative ¿omics study to understand the halophilic behaviour of Debaryomyces hansenii. Microbial Biotechnology, 15(4), 1133-1151. https://doi.org/10.1111/1751-7915.13954 - Navarrete, C., Siles, A., Martínez, J. L., Calero, F., & Ramos, J. (2009). Oxidative stress sensitivity in Debaryomyces hansenii. FEMS Yeast Research, 9(4), 582-590. https://doi.org/10.1111/j.1567-1364.2009.00500.x - Nevoigt, E., & Stahl, U. (1997). Osmoregulation and glycerol metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiology Reviews, 21(3), 231-241. https://doi.org/10.1111/j.1574-6976.1997.tb00352.x - Nielsen, J. (2019). Yeast Systems Biology: Model Organism and Cell Factory. Biotechnology Journal, 14(9), e1800421. https://doi.org/10.1002/biot.201800421 - Norkrans, B. (1968). Studies on marine occurring yeasts: Respiration, fermentation and salt tolerance. Archiv Für Mikrobiologie, 62(4), 358-372. https://doi.org/10.1007/BF00425641 - Norkrans, B., & Kylin, A. (1969). Regulation of the potassium to sodium ratio and of the osmotic potential in relation to salt tolerance in yeasts. Journal of Bacteriology, 100(2), 836-845. https://doi.org/10.1128/jb.100.2.836-845.1969 - Oren, A. (1999). Bioenergetic aspects of halophilism. Microbiology and Molecular Biology Reviews: MMBR, 63(2), 334-348. https://doi.org/10.1128/MMBR.63.2.334-348.1999 - Papouskova, K., & Sychrova, H. (2007). The co-action of osmotic and high temperature stresses results in a growth improvement of Debaryomyces hansenii cells. International Journal of Food Microbiology, 118(1), 1-7. https://doi.org/10.1016/j.ijfoodmicro.2007.04.005 - Patra, P., Das, M., Kundu, P., & Ghosh, A. (2021). Recent advances in systems and synthetic biology approaches for developing novel cell-factories in non-conventional yeasts. Biotechnology Advances, 47, 107695. https://doi.org/10.1016/j.biotechadv.2021.107695 - Peromingo, B., Andrade, M. J., Delgado, J., Sánchez-Montero, L., & Núñez, F. (2019). Biocontrol of aflatoxigenic Aspergillus parasiticus by native Debaryomyces hansenii in dry-cured meat products. Food Microbiology, 82, 269-276. https://doi.org/10.1016/j.fm.2019.01.024 - Pisa, D., Ramos, M., Molina, S., García, P., & Carrasco, L. (2007). Evolution of antibody response and fungal antigens in the serum of a patient infected with Candida famata. Journal of Medical Microbiology, 56(Pt 5), 571-578. https://doi.org/10.1099/jmm.0.47042-0 - Prista, C., Almagro, A., Loureiro-Dias, M. C., & Ramos, J. (1997). Physiological basis for the high salt tolerance of Debaryomyces hansenii. Applied and Environmental Microbiology, 63(10), 4005-4009. https://doi.org/10.1128/aem.63.10.4005-4009.1997 - Prista, C., González-Hernández, J. C., Ramos, J., & Loureiro-Dias, M. C. (2007). Cloning and characterization of two K+ transporters of Debaryomyces hansenii. Microbiology, 153(9), 3034-3043. https://doi.org/10.1099/mic.0.2007/006080-0 - Prista, C., Loureiro-Dias, M. C., Montiel, V., García, R., & Ramos, J. (2005). Mechanisms underlying the halotolerant way of Debaryomyces hansenii. FEMS Yeast Research, 5(8), 693-701. https://doi.org/10.1016/j.femsyr.2004.12.009 - Prista, C., Michán, C., Miranda, I. M., & Ramos, J. (2016). The halotolerant Debaryomyces hansenii, the Cinderella of non-conventional yeasts. Yeast (Chichester, England), 33(10), 523-533. https://doi.org/10.1002/yea.3177 - Prista, C., Soeiro, A., Vesely, P., Almagro, A., Ramos, J., & Loureiro-Dias, M. C. (2002). Genes from Debaryomyces hansenii increase salt tolerance in Saccharomyces cerevisiae W303. FEMS Yeast Research, 2(2), 151-157. https://doi.org/10.1111/j.1567-1364.2002.tb00079.x - Ramos, J., Haro, R., & Rodríguez-Navarro, A. (1990). Regulation of potassium fluxes in Saccharomyces cerevisiae. Biochimica Et Biophysica Acta, 1029(2), 211-217. https://doi.org/10.1016/0005-2736(90)90156-i - Ramos, J., Melero, Y., Ramos-Moreno, L., MichÁn, C., & Cabezas, L. (2017). Debaryomyces hansenii Strains from Valle De Los Pedroches Iberian Dry Meat Products: Isolation, Identification, Characterization, and Selection for Starter Cultures. Journal of Microbiology and Biotechnology, 27(9), 1576-1585. https://doi.org/10.4014/jmb.1704.04045 - Ramos-Moreno, L., Ramos, J., & Michán, C. (2019). Overlapping responses between salt and oxidative stress in Debaryomyces hansenii. World Journal of Microbiology and Biotechnology, 35(11), 170. https://doi.org/10.1007/s11274-019-2753-3 - Ramos-Moreno, L., Ruiz-Castilla, F. J., Bravo, C., Martínez, E., Menéndez, M., Dios-Palomares, R., & Ramos, J. (2019). Inoculation with a terroir selected Debaryomyces hansenii strain changes physico-chemical characteristics of Iberian cured pork loin. Meat Science, 157, 107875. https://doi.org/10.1016/j.meatsci.2019.107875 - Ramos-Moreno, L., Ruiz-Pérez, F., Rodríguez-Castro, E., & Ramos, J. (2021). Debaryomyces hansenii Is a Real Tool to Improve a Diversity of Characteristics in Sausages and Dry-Meat Products. Microorganisms, 9(7), 1512. https://doi.org/10.3390/microorganisms9071512 - Rebello, S., Abraham, A., Madhavan, A., Sindhu, R., Binod, P., Karthika Bahuleyan, A., Aneesh, E. M., & Pandey, A. (2018). Non-conventional yeast cell factories for sustainable bioprocesses. FEMS Microbiology Letters, 365(21). https://doi.org/10.1093/femsle/fny222 - Rivas, B., Torre, P., Domínguez, J. M., Perego, P., Converti, A., & Parajó, J. C. (2003). Carbon material and bioenergetic balances of xylitol production from corncobs by Debaryomyces hansenii. Biotechnology Progress, 19(3), 706-713. https://doi.org/10.1021/bp025794v - Rodr¿¿guez-Navarro, A. (2000). Potassium transport in fungi and plants. Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, 1469(1), 1-30. https://doi.org/10.1016/S0304-4157(99)00013-1 - Ruiz-Castilla, F. J., Rodríguez-Castro, E., Michán, C., & Ramos, J. (2021). The Potassium Transporter Hak1 in Candida Albicans, Regulation and Physiological Effects at Limiting Potassium and under Acidic Conditions. Journal of Fungi, 7(5), 362. https://doi.org/10.3390/jof7050362 - Ruiz-Pérez, F. S., Ruiz-Castilla, F. J., Leal, C., Martínez, J. L., & Ramos, J. (2023). Sodium and lithium exert differential effects on the central carbon metabolism of Debaryomyces hansenii through the glyoxylate shunt regulation. Yeast (Chichester, England), 40(7), 265-275. https://doi.org/10.1002/yea.3856 - Samokhvalov, V., Ignatov, V., & Kondrashova, M. (2004). Inhibition of Krebs cycle and activation of glyoxylate cycle in the course of chronological aging of Saccharomyces cerevisiae. Compensatory role of succinate oxidation. Biochimie, 86(1), 39-46. https://doi.org/10.1016/j.biochi.2003.10.019 - Sánchez, N. S., Arreguá¬n, R., Calahorra, M., & Peña, A. (2008). Effects of salts on aerobic metabolism of Debaryomyces hansenii. FEMS Yeast Research, 8(8), 1303-1312. https://doi.org/10.1111/j.1567-1364.2008.00426.x - Sánchez, N. S., Calahorra, M., González-Hernández, J. C., & Peña, A. (2006). Glycolytic sequence and respiration of Debaryomyces hansenii as compared to Saccharomyces cerevisiae. Yeast (Chichester, England), 23(5), 361-374. https://doi.org/10.1002/yea.1360 - Sánchez, N. S., Calahorra, M., Ramírez, J., & Peña, A. (2018). Salinity and high pH affect energy pathways and growth in Debaryomyces hansenii. Fungal Biology, 122(10), 977-990. https://doi.org/10.1016/j.funbio.2018.07.002 - Santos, M. A. S., Gomes, A. C., Santos, M. C., Carreto, L. C., & Moura, G. R. (2011). The genetic code of the fungal CTG clade. Comptes Rendus Biologies, 334(8), 607-611. https://doi.org/10.1016/j.crvi.2011.05.008 - Sanui, H. (1974). Measurement of inorganic orthophosphate in biological materials: Extraction properties of butyl acetate. Analytical Biochemistry, 60(2), 489-504. https://doi.org/10.1016/0003-2697(74)90259-0 - Secco, D., Wang, C., Shou, H., & Whelan, J. (2012). Phosphate homeostasis in the yeast Saccharomyces cerevisiae, the key role of the SPX domain-containing proteins. FEBS Letters, 586(4), 289-295. https://doi.org/10.1016/j.febslet.2012.01.036 - Segal-Kischinevzky, C., Rodarte-Murguía, B., Valdés-López, V., Mendoza-Hernández, G., González, A., & Alba-Lois, L. (2011). The Euryhaline Yeast Debaryomyces hansenii has Two Catalase Genes Encoding Enzymes with Differential Activity Profile. Current Microbiology, 62(3), 933-943. https://doi.org/10.1007/s00284-010-9806-z - Sherman, D., Durrens, P., Beyne, E., Nikolski, M., Souciet, J.-L., & Génolevures Consortium. (2004). Génolevures: Comparative genomics and molecular evolution of hemiascomycetous yeasts. Nucleic Acids Research, 32(Database issue), D315-318. https://doi.org/10.1093/nar/gkh091 - Sherman, F. (1991). [1] Getting started with yeast. En Methods in Enzymology (Vol. 194, pp. 3-21). Academic Press. https://doi.org/10.1016/0076-6879(91)94004-V - Sherman, F. (2002). Getting started with yeast. En C. Guthrie & G. R. Fink (Eds.), Methods in Enzymology (Vol. 350, pp. 3-41). Academic Press. https://doi.org/10.1016/S0076-6879(02)50954-X - Silverstein, R. M. (1975). The determination of the molar extinction coefficient of reduced DTNB. Analytical Biochemistry, 63(1), 281-282. https://doi.org/10.1016/0003-2697(75)90219-5 - Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., & Klenk, D. C. (1985). Measurement of protein using bicinchoninic acid. Analytical Biochemistry, 150(1), 76-85. https://doi.org/10.1016/0003-2697(85)90442-7 - Spasskaya, D. S., Kotlov, M. I., Lekanov, D. S., Tutyaeva, V. V., Snezhkina, A. V., Kudryavtseva, A. V., Karpov, V. L., & Karpov, D. S. (2021). CRISPR/Cas9-Mediated Genome Engineering Reveals the Contribution of the 26S Proteasome to the Extremophilic Nature of the Yeast Debaryomyces hansenii. ACS Synthetic Biology, 10(2), 297-308. https://doi.org/10.1021/acssynbio.0c00426 - Steels, E. L., Learmonth, R. P., & Watson, K. Y. 1994. (s. f.). Stress tolerance and membrane lipid unsaturation in Saccharomyces cerevisiae grown aerobically or anaerobically. Microbiology, 140(3), 569-576. https://doi.org/10.1099/00221287-140-3-569 - Strucko, T., Andersen, N. L., Mahler, M. R., Martínez, J. L., & Mortensen, U. H. (2021). A CRISPR/Cas9 method facilitates efficient oligo-mediated gene editing in Debaryomyces hansenii. Synthetic Biology (Oxford, England), 6(1), ysab031. https://doi.org/10.1093/synbio/ysab031 - Takaç, S., & Sengel, B. (2010). Extracellular lipolytic enzyme activity of a newly isolated Debaryomyces hansenii. Preparative biochemistry & biotechnology, 40, 28-37. https://doi.org/10.1080/10826060903388820 - Tester, M., & Davenport, R. (2003). Na+ Tolerance and Na+ Transport in Higher Plants. Annals of Botany, 91(5), 503-527. https://doi.org/10.1093/aob/mcg058 - Thomé, P. E. (2004). Isolation of a GPD gene from Debaryomyces hansenii encoding a glycerol 3-phosphate dehydrogenase (NAD+). Yeast (Chichester, England), 21(2), 119-126. https://doi.org/10.1002/yea.1070 - Thomé-Ortiz, P. E., Peña, A., & Ramírez, J. (1998). Monovalent cation fluxes and physiological changes of Debaryomyces hansenii grown at high concentrations of KCl and NaCl. Yeast (Chichester, England), 14(15), 1355-1371. - Thorwall, S., Schwartz, C., Chartron, J. W., & Wheeldon, I. (2020). Stress-tolerant non-conventional microbes enable next-generation chemical biosynthesis. Nature Chemical Biology, 16(2), 113-121. https://doi.org/10.1038/s41589-019-0452-x - Turk, M., Montiel, V., Žigon, D., Plemenitaš, A., & Ramos, J. (2007). Plasma membrane composition of Debaryomyces hansenii adapts to changes in pH and external salinity. Microbiology (Reading, England), 153(Pt 10), 3586-3592. https://doi.org/10.1099/mic.0.2007/009563-0 - van Zelm, E., Zhang, Y., & Testerink, C. (2020). Salt Tolerance Mechanisms of Plants. Annual Review of Plant Biology, 71, 403-433. https://doi.org/10.1146/annurev-arplant-050718-100005 - Ventosa, A., Márquez, M. C., Garabito, M. J., & Arahal, D. R. (1998). Moderately halophilic gram-positive bacterial diversity in hypersaline environments. Extremophiles: Life Under Extreme Conditions, 2(3), 297-304. https://doi.org/10.1007/s007920050072 - Wagner, D., Sander, A., Bertz, H., Finke, J., & Kern, W. V. (2005). Breakthrough invasive infection due to Debaryomyces hansenii (teleomorph Candida famata) and Scopulariopsis brevicaulis in a stem cell transplant patient receiving liposomal amphotericin B and caspofungin for suspected aspergillosis. Infection, 33(5-6), 397-400. https://doi.org/10.1007/s15010-005-5082-4 - Wani, S. H., Kumar, V., Khare, T., Guddimalli, R., Parveda, M., Solymosi, K., Suprasanna, P., & Kavi Kishor, P. B. (2020). Engineering salinity tolerance in plants: Progress and prospects. Planta, 251(4), 76. https://doi.org/10.1007/s00425-020-03366-6 - Welsh, D. T. (2000). Ecological significance of compatible solute accumulation by micro-organisms: From single cells to global climate. FEMS Microbiology Reviews, 24(3), 263-290. https://doi.org/10.1111/j.1574-6976.2000.tb00542.x - Yuenyong, W., Sirikantaramas, S., Qu, L.-J., & Buaboocha, T. (2019). Isocitrate lyase plays important roles in plant salt tolerance. BMC Plant Biology, 19(1), 472. https://doi.org/10.1186/s12870-019-2086-2