Técnicas Big Data para la predicción de la demanda y precio eléctrico
- Laura Melgar García 1
- José Francisco Torres Maldonado 2
- Alicia Troncoso 2
- José Cristóbal Riquelme Santos 3
-
1
Universidad IE
info
-
2
Universidad Pablo de Olavide
info
-
3
Universidad de Sevilla
info
ISSN: 0422-2784
Year of publication: 2024
Issue Title: Digitalización y electrificación
Issue: 431
Pages: 119-130
Type: Article
More publications in: Economía industrial
Abstract
Electricity demand forecasting is a fundamental component of supply chain planning in the energy sector, in the stages of generation, storage and distribution of energy. Storing electricity is a challenge, so the balance between electricity demand and supply is continuously being sought. This makes the electricity price market volatile and difficult to predict. In this paper, several Big Data prediction techniques for electricity demand and price data in Spain are proposed with the main objective of improving the efficiency of the supply chain management. Specifically, this research addresses these problems by making use of Machine Learning and Deep Learning models. The performance results demonstrate the good behavior of the models.
Bibliographic References
- Vega-Márquez, B., Rubio-Escudero, C., Nepomuceno-Chamorro, I.A., Arcos-Vargas, Á. Use of Deep Learning Architectures for Day-Ahead Electricity Price Forecasting over Different Time Periods in the Spanish Electricity Market. Appl. Sci. 2021, 11, 6097.
- González-Torres, M., Pérez-Lombard, L., Coronel, J., Maestre, I. A cross-country review on energy efficiency drivers. Applied Energy. 2021, 289. 116681.
- Mathaba, T., Xia, X., Zhang, J. Analysing the economic benefit of electricity price forecast in industrial load scheduling. Electric Power Systems Research. 2014, 116, 158-165.
- International Energy Agency. Electricity Market Report Update. Outlook for 2023 and 2024. 2023.
- Popescu, M., Balas, V.E., Perescu-Popescu, L., Mastorakis, N.E. Multilayer perceptron and neural networks. WSEAS Transactions on Circuits and Systems archive. 2009, 8, 579-588.
- Li, Z., Liu, F., Yang, W., Peng, S., Zhou, J. A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects. IEEE Transactions on Neural Networks and Learning Systems. 2022, 33, 12, 6999-7019.
- Lea, C., Vidal, R., Reiter, A., Hager, G.D. Temporal Convolutional Networks: A Unified Approach to Action Segmentation. ECCV 2016 Workshops. ECCV 2016. Lecture Notes in Computer Science. 2016, 9915.
- Lindemann, B., Müller, T., Vietz, H., Jazdi, N., Weyrich, M. A survey on long short-term memory networks for time series prediction. Procedia CIRP. 2021, 99, 650-655.
- Divina, F., Torres Maldonado, J.F., García-Torres, M., Martínez-Álvarez, F., Troncoso, A. Hybridizing Deep Learning and Neuroevolution: Application to the Spanish Short-Term Electric Energy Consumption Forecasting. Appl. Sci. 2020, 10, 5487.
- Bernard, S., Heutte, L., Adam, S. On the selection of decision trees in Random Forests. International Joint Conference on Neural Networks. 2009, 302- 307.
- Melgar-García, L., Gutiérrez-Avilés, D., Rubio-Escudero, C., Troncoso, A. A novel distributed forecasting method based on information fusión and incremental Learning for streaming time series. Information Fusion. 2023, 95, 163-173.
- Melgar-García, L., Gutiérrez-Avilés, D., Rubio-Escudero, C., Troncoso, A. Identifying novelties and anomalies for incremental learning in streaming time series forecasting. Engineering Applications of Artificial Intelligence. 2023, 123, Part B, 106326.
- Scrucca, L. On some extensions to GA Package: Hybrid optimisation, parallelisation and islands evolution. The R Journal. 2017, 9/1, 187-206.