Profundidad para datos funcionales
- Juan José Romo Urroz Director/a
Universitat de defensa: Universidad Carlos III de Madrid
Fecha de defensa: 06 de de juliol de 2005
- Daniel Peña Sánchez de Rivera President/a
- Santiago Velilla Cerdán Secretari/ària
- Antonio Cuevas González Vocal
- Wenceslao González Manteiga Vocal
- Mariano José Valderrama Bonnet Vocal
Tipus: Tesi
Resum
La generalización de las nuevas tecnologías y la creciente complejidad de los análisis estadísticos en distintas disciplinas, como Economía, Biología o Medicina, generan con frecuencia datos en forma de funciones, En esta tesis doctoral se propone una metodología para analizar datos funcionales basada en la idea de profundidad. En primer lugar, se introducen varias definiciones de la noción de profundidad para datos funcionales y se analizan sus propiedades. La versión finito-dimensional de estos nuevos conceptos proporciona una alternativa a todas las nociones de profundidad existentes que es computacionalmente factible en cualquier dimensión y, por tanto, adecuada para cualquier tipo de observaciones de gran complejidad. Además, se extienden a datos funcionales las ideas de regiones recortadas y centrales y se estudian sus propiedades. También se presentan estrategias de contraste de hipótesis basadas en las nuevas definiciones para decidir si dos grupos de curvas proceden de la misma población. Finalmente, se construyen procedimientos de clasificación supervisada robustos y se aplican a datos de microarrays.