Dificultades del alumnado en Económicas y Empresariales al enfrentarse al Cálculo Integral

  1. Martín Caraballo, Ana M. 1
  2. Paralera Morales, Concepción 1
  3. Tenorio Villalón, Ángel F. 1
  1. 1 Universidad Pablo de Olavide
    info

    Universidad Pablo de Olavide

    Sevilla, España

    ROR https://ror.org/02z749649

Journal:
Anales de ASEPUMA

ISSN: 2171-892X

Year of publication: 2017

Issue: 25

Type: Article

More publications in: Anales de ASEPUMA

Abstract

Integral Calculus is a basic tool for the study of economical phenomena from a dynamic viewpoint. In this sense, skills related to the integration of elementary functions must be considered key when solving and working with macro- or micro-economic problems among other questions. This paper analyzes the drawbacks and lacks which we have observed in our students when studying Mathematics courses in a Faculty of Economics

Bibliographic References

  • Achdou, Y; Buera F.J.; Lasry J.-M.; Lions, P.-L. y Moll, B. (2014). “Partial differential equation models in macroeconomics”. Phil. Trans. R. Soc. A372: 20130397 (19pp.).
  • Beissner, P. (2013). “Microeconomic Theory of Financial Markets under Volatility Uncertainty”. Ph.D. Thesis, Bielefeld University, Alemania.
  • Fedriani, E.M. y Tenorio, A.F. (2010). “Matemáticas del más allá: el infinito”. Unión: Revista Iberoamericana de Educación Matemática, 21, pp. 37-58.
  • LLorens, J.L. y Santoja, F.J. (1997). “Una interpretación de las dificultades en el aprendizaje de concepto de integral”. Divulgaciones Matemáticas, 5 (½), pp. 61-76.
  • Mandler, G. (1989). “Affect and learning: Cases and consequences of emotional interactions” En D.B. McLeod & V.M. Adams (eds.). Affect and mathematical problem solving: A new perspective. New York: Springer-Verlang, pp. 3-19.
  • Marques, J. (2014). “An Application of Ordinary Differential Equations in Economics: Modeling Consumer’s Preferences Using Marginal Rates of Substitution”. En N.E. Mastorakis, F. Mainardi & M. Milanova (eds.). Mathematical Methods in Science and Mechanics. Mathematics and Computers in Science and Engineering Series 33. Lisboa: WSEAS Press.
  • Mulhern, G. (1989). “Between the ears: Making inferences about internal process”. En B. Greer & G. Mulhern (eds.). New Directions in Matehmatics Education. Londres: Routledge.
  • Orton, A. (1983). “Students’ understanding of integration”. Educational Studies in Mathematics”, 14(1), pp. 1-18.
  • Sentilles, D. (2011). A bridge to Advanced Mathematics. Mineola, New York:Dover Publications.
  • Thompson, P.W. y Silverman, J. (2008). “The concept of accumulation in Calculus”. In M.P. Carlso & C. Ramussen (eds.). Making the connection: Research and teaching in undergraduate mathematics. Washington D.C.: Mathematical Association of America, pp. 43-52.
  • Tsirlin, A.M. y Amelkin, S.A. (2010). “Mathematical models and equilibrium in irreversible Microeconomics”. Interdisciplinary Description of Complex Systems, 8(1), pp. 13-23.
  • Turégano, P. (1994). “Los conceptos en torno a la medida y el aprendizaje del Cálculo infinitesimal”. Tesis Doctoral, Universidad de Valencia, España.
  • Turégano, P. (1997). “El aprendizaje del concepto de integral”. Revista SUMA, 26, pp. 39-52.