Modelado y control en vuelo estacionario de helicópteros autónomos con cable de fijación a tierra

  1. Luis A. Sandino 1
  2. Manuel Béjar 2
  3. Konstantin Kondak 3
  4. Aníbal Ollero 4
  1. 1 Universidad de Sevilla
    info

    Universidad de Sevilla

    Sevilla, España

    ROR https://ror.org/03yxnpp24

  2. 2 Universidad Pablo de Olavide
    info

    Universidad Pablo de Olavide

    Sevilla, España

    ROR https://ror.org/02z749649

  3. 3 Agencia Espacial Alemana
  4. 4 Centro Avanzado de Tecnologías Aeroespaciales
Journal:
Revista iberoamericana de automática e informática industrial ( RIAI )

ISSN: 1697-7920

Year of publication: 2013

Volume: 10

Issue: 4

Pages: 375-389

Type: Article

DOI: 10.1016/J.RIAI.2013.09.002 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Revista iberoamericana de automática e informática industrial ( RIAI )

Sustainable development goals

Abstract

Helicopters are well-known by their hovering and vertical take-off and landing capabilities. However, the performance of the valuable feature of hovering can be seriously affected by external disturbances such as wind effect. The latter could be even more significant when dealing with small-size helicopters, which are commonly adopted as base platforms for developing unmanned aerial vehicles. In order to address the aforementioned instabilities in hovering maneuvers, it is possible to use an augmented configuration that consists of the unmanned helicopter itself, a tether connecting the helicopter to the ground, and a system in charge of adjusting the tether tension. In this paper, in addition to a detailed model of the system, an analysis on the inherent benefits to the augmented configuration is presented, as well as a general scheme for control design. By way of illustration of previous ideas, several simulations under artificially generated wind influences are presented and compared.

Funding information

proyecto del Plan Nacional de I+D+i de la Secretaría de Estado de Investigación, Desarrollo e Innovación del gobierno de Es-paña CLEAR (DPI2011-28937-C02-01) y por el proyecto de la Comisión Europea EC-SAFEMOBIL (FP7-ICT-2011-7).

Bibliographic References

  • Ahmed, B., Pota, H., 2008. Backstepping-based landing control of a RUAV using tether incorporating flapping correction dynamics. Proceedings of the American Control Conference, pp. 2728–2733.
  • Bendotti, P., Morris, J., 1995. Robust hover control for a model helicopter. Vol. 1. Proceedings of the American Control Conference, pp. 682–687.
  • Bernard, M., Kondak, K., 2009. Generic slung load transportation system using small size helicopters. Proceedings of the IEEE International Conference on Robotics and Automation, pp. 3258–3264.
  • Bernard, M., Kondak, K., Maza, I., Ollero, A., 2011. Autonomous transportation and deployment with aerial robots for search and rescue missions. Journal of Field Robotics 28 (6), 914–931.
  • Kane, T. R., Levinson, D. A., 1985. Dynamics. Theory and Applications. McGraw-Hill.
  • Kane, T. R., Likins, P. W., Levinson, D. A., 1983. Spacecraft Dynamics. McGraw-Hill.
  • Kondak, K., Bernard, M., Losse, N., Hommel, G., 2006. Elaborated modeling and control for autonomous small size helicopters. VDI Berichte 1956, 207– 216.
  • MotionGenesis Kane 5.x, 2012. Forces, motion and code-generation software. http://www.motiongenesis.com/, accessed: June 2012.
  • Oh, S., Pathak, K., Agrawal, S. K., Pota, H. R., Garratt, M., 2006. Approaches for a tether-guided landing of an autonomous helicopter. IEEE Transactions on Robotics 22 (3), 536–544.
  • Pradana, W., Joelianto, E., Budiyono, A., Adiprawita, W., 2011. Robust MIMO H∞ integral-backstepping PID controller for hovering control of unmanned model helicopter. Journal of Aerospace Engineering 24 (4), 454–462.
  • Rye, D., 1985. Longitudinal stability of a hovering, tethered rotorcraft. Journal of Guidance, Control, and Dynamics 8 (6), 743–752.
  • Sandino, L., Bejar, M., Kondak, K., Ollero, A., 2013a. On the use of tethered configurations for augmenting hovering stability in small-size autonomous helicopters. Journal of Intelligent & Robotic Systems 70, 509–525.
  • Sandino, L., Bejar, M., Ollero, A., 2013b. A survey on methods for elaborated modeling of the mechanics of a small-size helicopter. analysis and comparison. Journal of Intelligent & Robotic Systems.
  • Schmidt, G., Swik, R., 1974. Automatic hover control of an unmanned tethered rotorplatform. Automatica 10 (4), 393–403.
  • Tijani, I., Akmeliawati, R., Legowo, A., Budiyono, A., Muthalif, A., 2011. H∞ robust controller for autonomous helicopter hovering control. Aircraft Engineering and Aerospace Technology 83 (6), 363–374.
  • Weilenmann, M., Christen, U., Geering, H., 1994. Robust helicopter position control at hover. Vol. 3. Proceedings of the American Control Conference, pp. 2491-2495.