Antecedents and consequences of knowledge management performanceThe role of IT infrastructure

  1. José L. Roldán 1
  2. Juan C. Real 2
  3. Silvia Sánchez Ceballos 3
  1. 1 Universidad de Sevilla
    info

    Universidad de Sevilla

    Sevilla, España

    ROR https://ror.org/03yxnpp24

  2. 2 Universidad Pablo de Olavide
    info

    Universidad Pablo de Olavide

    Sevilla, España

    ROR https://ror.org/02z749649

  3. 3 IAT (Instituto Andaluz de Tecnología)
Revista:
Intangible Capital

ISSN: 1697-9818

Año de publicación: 2018

Volumen: 14

Número: 4

Páginas: 518-535

Tipo: Artículo

DOI: 10.3926/IC.1074 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Intangible Capital

Objetivos de desarrollo sostenible

Resumen

Purpose: In this paper, we assess the role of knowledge management (KM) practices as a key antecedent of KM performance. Also, we examine how Information technology (IT) infrastructure is used as a driver of KM performance, organizational performance and innovation. In addition, the effects of IT infrastructure can be indirect. Specifically, we show that KM performance is a mediator between organizational performance and innovation. Design/methodology/approach: Applying a variance-based structural equation modelling (PLS), we have carried out a study among a sample of 82 Andalusian technology-intensive innovative companies. Findings: First, KM practices and IT infrastructure are significant antecedents of KM performance. Second, KM performance has a direct influence on business performance and innovation outcomes. Third, IT infrastructure does not have a direct influence on business performance and innovation outcomes, but does have a significant indirect effect on them via KM performance. Practical implications: This research provides insights for why some firms may not be realizing benefits from investing in IT infrastructure. KM performance is strongly needed for the successful implementation of IT infrastructure in the organizations. Originality/value: The findings are important for practitioners and researchers because this study makes a contribution to the literature in KM by supporting the perspective that the business and organizational performance are function of the KM performance, a complementary resource through the value of IT infrastructure is enhanced.

Información de financiación

This research was supported by the Junta de Andalucía (Consejería de Economía, Innovación y Ciencia), Spain (Proyectos de investigación de excelencia: P06-SEJ-01994, P10-SEJ-6081).

Referencias bibliográficas

  • Alavi, M., Kayworth, T., & Leidner, D.E. (2006). An Empirical Examination of the Influence of Organizational Culture on Knowledge Management Practices. Journal of Management Information Systems, 22(3), 191-224. https://doi.org/10.2753/MIS0742-1222220307
  • Alavi, M., & Leidner, D.E. (1999). Knowledge Management Systems: Issues, Challenges and Benefits. Communications of AIS 7, 1-37
  • Alavi, M., & Leidner, D.E. (2001). Review: Knowledge Management and Knowledge Management Systems: Conceptual Foundations and Research Issues. MIS Quarterly, 25(1), 107-136. https://doi.org/10.2307/3250961
  • Altarawneh, I.I, & Altarawneh, K. (2017).Knowledge Management Practices and Intellectual Capital: A Case from Jordan. International Journal of Business, 22(4), 341-367
  • Argote L., Mc Evily, B., & Reagans, R. (2003). Managing Knowledge in Organizations: An Integrative Framework and Review of Emerging Themes. Management Science, 49(4), 571-582. https://doi.org/10.1287/mnsc.49.4.571.14424
  • Asaad, Z., & Marane, B. (2016, October). How Does Information Technology Capability Shape the Relationship between Organizational Culture and Innovation Capability in Manufacturing Sectors?. 17th International Scientific Conference on Economic and Social Development, Warsaw, Poland
  • Brynjolfsson, E., & Hitt, L. (1996). Paradox Lost? Firm-Level Evidence on the Return to Information Systems. Management Science, 42(4), 541-558. https://doi.org/10.1287/mnsc.42.4.541
  • Chadha, S.K., & Saini, R. (2014). Information Technology Support to Knowledge Management Practices: A Structural Equation Modeling Approach. IUP Journal of Knowledge Management, 12(1), 39-52
  • Chin, W.W. (2010). How to Write Up and Report PLS Analyses. In V. Esposito Vinzi, W.W. Chin, J. Henseler, & H. Wang (Eds.), Handbook of Partial Least Squares (pp. 655-690). Berlin Heidelberg: Springer-Verlag. https://doi.org/10.1007/978-3-540-32827-8_29
  • Choi, S., Lee, H., & Yoo, Y. (2010). The Impact of Information Technology and Transactive Memory Systems on Knowledge Sharing, Application and Team Performance: A Field Study. MIS Quarterly, 34(4), 855-870. https://doi.org/10.2307/25750708
  • Chong, S.H., Salleh, K, Ahmad, S.N.S., & Sharifuddin, S.S.O. (2011). KM Implementation in a Public Sector Accounting Organization: An Empirical Investigation. Journal of Knowledge Management, 15(3), 497-512. https://doi.org/10.1108/13673271111137457
  • Cooper, L.P. (2003). A Research Agenda to Reduce Risk in New Product Development through Knowledge Management: A Practitioner Perspective. Journal of Engineering and Technology Management, 20(1-2), 117-140. https://doi.org/10.1016/S0923-4748(03)00007-9
  • CWA 14924-1. (2004). European Guide to good Practice in Knowledge Management. Part 1: Knowledge management framework. ICS 03.100.99
  • CWA 14924-2. (2004). European Guide to good Practice in Knowledge Management. Part 2: Organizational culture. ICS 03.100.99
  • CWA 14924-3. (2004). European Guide to good Practice in Knowledge Management. Part 3: SME Implementation. ICS 03.100.99
  • CWA 14924-4. (2004). European Guide to Good Practice in Knowledge Management. Part 4: Guideline for Measurnig. ICS 03.100.99
  • CWA 14924-5. (2004). European Guide to Good Practice in Knowledge Management. Part 5: KM Terminology. ICS 03.100.99
  • Daghfous A., & White G.R. (1994). Information and innovation: a comprehensive representation. Research Policy, 23(3), 267-280. https://doi.org/10.1016/0048-7333(94)90038-8
  • Darroch, J. (2005). Knowledge Management, Innovation and Firm Performance. Journal of Knowledge Management, 9(5), 101-115. https://doi.org/10.1108/13673270510602809
  • Davenport, T.H. (1999). Knowledge Management and the Broader Firm: Strategy, Advantage, and Performance. In J. Liebowitz (Ed.), Knowledge Management Handbook (pp. 1-11). Boca Raton, FL: CRC Press
  • Davenport, T.H., & Prusak, L. (1998). Working knowledge: How Organizations Manage what they Know. Harvard Business School Press, Boston, MA, USA. https://doi.org/10.1145/347634.348775
  • Dewett, T., & Jones, G.R. (2001). The Role of Information Technology in the Organization: A Review, Model, and Assessment. Journal of Management, 27(3), 313-346. https://doi.org/10.1177/014920630102700306
  • Dolce, P., Esposito Vinzi, V., & Lauro, C. (2017). Predictive Path Modeling Through PLS and Other Component-Based Approaches: Methodological Issues and Performance Evaluation. In H. Latan & R. Noonan (Eds.), Partial Least Squares Path Modeling (pp. 153-172). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-64069-3_7
  • Donate, M., & Guadamillas, F. (2007). The Relationship between Innovation and Knowledge Strategies: Its Impacts on Business Performance. International Journal of Knowledge Management Studies, 1(3/4), 388-422. https://doi.org/10.1504/IJKMS.2007.012532
  • Durmusoglu, S.S., & Barczak, G. (2011). The Use of Information Technology Tools in New Product Development Phases: Analysis of Effects on New Product Innovativeness, Quality, and Market Performance. Industrial Marketing Management, 40(2), 321-330. https://doi.org/10.1016/j.indmarman.2010.08.009
  • Earl, L. (2003). Knowledge Management in Practice in Canada, 2001. Working paper Science, Innovation and Electronic Information Division Statistics Canada Catalogue no. 88F0006XIE-No. 007
  • Earl, L. (2005). Knowledge Sharing Succeeds: How Selected Service Industries Rated the Importance of Using Knowledge Management Practices to their Success. Working paper Science, Innovation and Electronic Information Division Statistics Canada Catalogue no. 88F0006XIE-No. 004. ISSN: 1706-8967 .ISBN: 0-662-39348-1
  • Elenkov, D.S. (2002). Effects of Leadership on Organizational Performance in Russian Companies. Journal of Business Research, 55(6), 467-480. https://doi.org/10.1016/S0148-2963(00)00174-0
  • Evermann, J., & Tate, M. (2016). Assessing the Predictive Performance of Structural Equation Model Estimators. Journal of Business Research, 69(10), 4565-4582. https://doi.org/10.1016/j.jbusres.2016.03.050
  • Garvin, D.A. (1993). Building a Learning Organization. Harvard Business Review, 71(4), 78-91
  • Felipe, C.M., Roldán, J.L., & Leal-Rodríguez, A.L. (2017). Impact of Organizational Culture Values on Organizational Agility. Sustainability, 9(12), 2354. https://doi.org/10.3390/su9122354
  • Gold, A.H., Malhotra, A., & Segars, A.H. (2001). Knowledge Management: An Organizational Capabilities Perspective. Journal of Management Information Systems, 18(1), 185-214. https://doi.org/10.1080/07421222.2001.11045669
  • Grant, R.M. (1991). Contemporary Strategy Analysis: Concepts, Techniques, Applications. Cambridge, MA. Blackwell
  • Grant, R.M. (1996). Toward a Knowledge-Based Theory of the Firm. Strategic Management Journal, 17(7), 109-122. https://doi.org/10.1002/smj.4250171110
  • Hair, J.F.J., Hult, G.T.M., Ringle, C.M., & Sarstedt, M. (2017). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM) (2nd ed.). Thousand Oaks, CA: SAGE Publications
  • Handzic, M. (2015). A descriptive analysis of knowledge management research: Period from 1997 to 2012. In E. Bolisani & M. Handzic (Eds.), Advances in Knowledge Management: Celebrating 20 years of research and practice (pp. 45-64). Switzerland: Springer International Publishing
  • Hansen, J.I., & Thompson, C.A. (2002). Knowledge Management: When People, Process, and Technology Converge. LIMRA's MarketFacts Quarterly, 21(2), 14-21
  • Hansen, M.T., Nohria, N., & Tierney, T. (1999). What's your Strategy for Managing Knowledge?. Harvard Business Review, 77(2), 106-116
  • Haque, A, & Anwar, S. (2012). Linking Top Management Support and IT Infrastructure with Organizational Performance: Mediating Role of Knowledge Application. Canadian Social Science, 8(1), 121-129
  • Henseler, J. (2017a). Bridging Design and Behavioral Research with Variance-Based Structural Equation Modeling. Journal of Advertising, 46(1), 178-192. https://doi.org/10.1080/00913367.2017.1281780
  • Henseler, J. (2017b). Adanco 2.0.1. User Manual. KG, Kleve, Germany: Composite Modeling GmbH & Co
  • Henseler, J. (2017c). Partial Least Squares Path Modeling. In K. H. Leeflang, P. S., Wieringa, J. E., Bijmolt, T.H., & Pauwels (Ed.), Advanced Methods for Modeling Markets (pp. 361-381). Springer International Publishing. https://doi.org/10.1007/978-3-319-53469-5_12
  • Henseler, J. (2018). Partial Least Squares Path Modeling: Quo Vadis?. Quality & Quantity, 52(1), 1-8. https://doi.org/10.1007/s11135-018-0689-6
  • Henseler, J., Hubona, G., & Ray, P.A. (2016). Using PLS Path Modeling in New Technology Research: Updated Guidelines. Industrial Management & Data Systems, 116(1), 2-20. https://doi.org/10.1108/IMDS-09-2015-0382
  • Henseler, J., Ringle, C.M., & Sarstedt, M. (2015). A New Criterion for Assessing Discriminant Validity in Variance-Based Structural Equation Modeling. Journal of the Academy of Marketing Science, 43(1), 115-135. https://doi.org/10.1007/s11747-014-0403-8
  • Henseler, J., Ringle, C.M., & Sarstedt, M. (2016). Testing Measurement Invariance of Composites Using Partial Least Squares. International Marketing Review, 33(3), 405-431. https://doi.org/10.1108/IMR-09-2014-0304
  • Henseler, J., Ringle, C.M., & Sinkovics, R.R. (2009). The Use of Partial Least Squares Path Modeling in International Marketing. In J. Henseler, C. M. Ringle, & R. R. Sinkovics (Eds.), Advances in International Marketing, 20, 277-319. Bingley: Emerald Group Publishing. https://doi.org/10.1108/S1474-7979(2009)0000020014
  • Ho, C-T. (2009). The Relationship Between Knowledge Management Enablers and Performance. Industrial Management and Data Systems, 109(1), 98-117. https://doi.org/10.1108/02635570910926618
  • Holsapple, C., & Joshi, K.A. (2003). Knowledge management ontology. In C.W. Holsapple (Ed.), Handbook on Knowledge Management (Vol 1: Knowledge Matters pp 89-128). Springer-Verlag, Heidelberg, Germany
  • Hu, L., & Bentler, P.M. (1998). Fit Indices in Covariance Structure Modeling: Sensitivity to Underparameterized Model Misspecification. Psychological Methods, 3(4), 424-453. https://doi.org/10.1037/1082-989X.3.4.424
  • Hu, L., & Bentler, P.M. (1999). Cutoff Criteria for Fit Indexes in Covariance Structure Analysis: Conventional Criteria Versus New Alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55. https://doi.org/10.1080/10705519909540118
  • Inkinen, H. (2015). Review of Empirical Research on Intellectual Capital and Firm Performance. Journal of Intellectual Capital, 16(3), 518-565. https://doi.org/10.1108/JIC-01-2015-0002
  • Inkinen, H.T., Kianto, A., & Vanhala, M. (2015). Knowledge Management Practices and Innovation Performance in Finland. Baltic Journal of Management, 10(4), 432-455. https://doi.org/10.1108/BJM-10-2014-0178
  • Inkinen, H. (2016). Review of Empirical Research on Knowledge Management Practices and Firm Performance. Journal of Knowledge Management, 20(2), 230-257. https://doi.org/10.1108/JKM-09-2015-0336
  • Inkpen, A., & Crossan. M.M. (1995). Believing is Seeing: Organizational Learning in Joint Ventures. Journal of Management Studies, 32(5), 595-618. https://doi.org/10.1111/j.1467-6486.1995.tb00790.x
  • Kelly, M. (1994). Productivity and Information Technology: The Elusive Connection". Management Science, 40(11), 1406-1425. https://doi.org/10.1287/mnsc.40.11.1406
  • Kerssens-van Drongelen C., Weerd-Nederhof, P.C., & Fisscher, O.A. (1996). Describing the Issues of Knowledge Management in R&D: Towards a Communication and Analysis Tool. R&D Management, 26(3), 213-229. https://doi.org/10.1111/j.1467-9310.1996.tb00957.x
  • Kettinger, W., Grover, V., Guha, S., & Segars, A. (1994). Strategic Information Systems Revisited: A Study in Sustainability and Performance. MIS Quarterly, 18(1), 31-58. https://doi.org/10.2307/249609
  • Keying, Z., Rui, Z., & Xiaoli, Z. (2010). Research on the Influence of Knowledge Management Capability to Intellectual Property Risk in Enterprise Independent Innovation. Proceedings of the International Conference on EBusiness and E-Government, ICEE, 5592723 (pp.1915-1919). https://doi.org/10.1109/ICEE.2010.484
  • King, W. (2005). Communication and Information Processing as a Critical Success Factor in the Effective Knowledge Organisation. International Journal of Business Information Systems, 1(1/2), 31-52. https://doi.org/10.1504/IJBIS.2005.007399
  • Kleis, L., Chwelos, P., Ramirez, R.V., & Cockburn, I. (2012). Information Technology and Intangible Output: The Impact of IT Investment on Innovation Productivity. Information Systems Research, 23(1), 42-59. https://doi.org/10.1287/isre.1100.0338
  • Leonard-Barton, D. (1995). Wellsprings of knowledge: Building and sustaining the sources of innovation. Boston, MA, USA: Harvard Business School Press
  • Loveman, W. (1994). An Assessment of Productivity Impact on Information Technologies. In T. J. Allen, M.S. Scott (eds.), Information Technology and the Corporation of the 1990's: Research Studies (pp. 84-110) Cambridge, MA.: MIT Press
  • Lucas, H.C. (1999). Information Technology and the Productivity Paradox. New York: Oxford University Press
  • Luftman, J.N., Lyytinen, K., & Ben-Zvi, T. (2017). Enhancing the Measurement of Information Technology (IT) Business Alignment and its Influence on Company Performance. Journal of Information Technology, 32(1), 26-46. https://doi.org/10.1057/jit.2015.23
  • Mahmood, M.A., & Mann, G.J. (1993). Measuring the Organizational Impact of Information Technology Investment: An Exploratory Study. Journal of Management Information Systems, 10(1), 97-122. https://doi.org/10.1080/07421222.1993.11517992
  • Mao, H., Liu, S., Zhang, J., & Deng, Z. (2016). Information Technology Resource, Knowledge Management Capability, and Competitive Advantage: The Moderating Role of Resource Commitment. International Journal of Information Management, 36(6 Part A), 1062-1074. https://doi.org/10.1016/j.ijinfomgt.2016.07.001
  • Mata, F.J., Fuerst, W.L., & Barney, J. (1995). Information Technology and Sustained Competitive Advantage: A Resource-Based Analysis. MIS Quarterly, 19(4), 487-505. https://doi.org/10.2307/249630
  • Migdadi, M. (2009). Knowledge Management Enablers and Outcomes in the Small-and-Medium Sized Enterprises. Industrial Management & Data Systems, 109(6), 840-858. https://doi.org/10.1108/02635570910968072
  • Mills, A.M., & Smith, T.A. (2011). Knowledge Management and Organizational Performance: A Decomposed View. Journal of Knowledge Management, 15(1), 156-171. https://doi.org/10.1108/13673271111108756
  • Nitzl, C., & Chin, W.W. (2017). The Case of Partial Least Squares (PLS) Path Modeling in Managerial Accounting Research. Journal of Management Control, 28(2), 137-156. https://doi.org/10.1007/s00187-017-0249-6
  • Nitzl, C., Roldan, J.L., Cepeda-Carrion, G. (2016). Mediation Analysis in Partial Least Squares Path Modeling: Helping Researchers Discuss More Sophisticated Models. Industrial Management & Data Systems, 116(9), 1849-1864. https://doi.org/10.1108/IMDS-07-2015-0302
  • Nonaka, I., Toyama, R., & Byosiére, P. (2001). A Theory of Organizational Knowledge Creation: Understanding the Dynamic Process of Creating Knowledge. In M. Dierkes, A. Berthoin, J. Child, & I. Nonaka (Eds.), Handbook of Organizational Learning and Knowledge (pp. 491-517). New York, NY, USA: Oxford University Press
  • O'Leary, D.E. (2003). Technologies for Knowledge Storage and Assimilation. In C.W. Holsale (Ed.), Handbook on Knowledge Management (Vol 2: Knowledge Directions, pp. 29-46). Heidelberg, Germany: Springer-Verlag
  • OECD. (2005). Oslo Manual: Guidelines for Collecting and Interpreting Innovation Data. Paris: 3rd OECD Publishing. https://doi.org/10.1787/9789264013100-en
  • Pawlosky, P., Forslin, J., & Reinhardt, R. (2001). Practices and Tools of Organizational Learning. In M. Dierkes, A. Berthoin, J. Child, I., & Nonaka (Eds.), Handbook of Organizational Learning and Knowledge (pp. 775-793) Oxford University Press, New York, NY, USA
  • Podsakoff, P.M., MacKenzie, S.B., Lee, J.-Y., & Podsakoff, N.P. (2003). Common method biases in behavioral research: a critical review of the literature and recommended remedies. The Journal of Applied Psychology, 88(5), 879-903. http://doi.org/10.1037/0021-9010.88.5.879
  • Powell, C.T., & Dent-Micallef, A. (1997). Information Technology as Competitive Advantage: The Role of Human, Business, and Technology Resources. Strategic Management Journal, 18(5), 375-405. http://dx.doi.org/10.1002/(SICI)1097-0266(199705)18:5<375::AID-SMJ876>3.0.CO;2-7
  • Rampersad, G.C., Plewa, C., & Troshani, I. (2012). Investigating the Use of Information Technology in Managing Innovation: A case study from a University Technology Transfer Office. Journal of Engineering and Technology Management, 29(1), 3-21. https://doi.org/10.1016/j.jengtecman.2011.09.002
  • Razmerita, L., Kirchner, K., & Sudzina, F. (2009). Personal Knowledge Management: The Role of Web 2.0 Tools for Managing Knowledge at Individual and Organisational Levels. Online Information Review, 33(6), 1021-1039. https://doi.org/10.1108/14684520911010981
  • Real, J.C., Leal, A., & Roldán, J.L. (2006). Information Technology as a Determinant of Organizational Learning and Technological Distinctive Competencies. Industrial Marketing Management, 35(4), 505-521. https://doi.org/10.1016/j.indmarman.2005.05.004
  • Riege, A. (2005). Three-Dozen Knowledge-Sharing Barriers Managers Must Consider. Journal of Knowledge Management, 9(3), 19-33. https://doi.org/10.1108/13673270510602746
  • Rigdon, E.E. (2013). Partial Least Squares Path Modeling. In G. R. Hancock & R. O. Mueller (Eds.), Structural Equation Modeling: A Second Course (2nd ed., pp. 81-116). Charlotte, NC: Information Age
  • Rigdon, E.E., Sarstedt, M., & Ringle, C.M. (2017). On Comparing Results from CB-SEM and PLS-SEM: Five Perspectives and Five Recommendations. Marketing ZFP, 39(3), 4-16. https://doi.org/10.15358/0344-1369-2017-3-4
  • Ringle, C.M., Wende, S., & Becker, J. (2015). SmartPLS 3. Bönningstedt: SmartPLS. Retrieved from: http://www.smartpls.com/
  • Roldán, J.L., & Sánchez-Franco, M.J. (2012). Variance-Based Structural Equation Modeling: Guidelines for Using Partial Least Squares in Information Systems Research. In M. Mora, O. Gelman, A. Steenkamp, & M. Raisinghani (Eds.), Research Methodologies, Innovations and Philosophies in Software Systems Engineering and Information Systems (pp. 193-221). Hershey PA: IGI Global. https://doi.org/10.4018/978-1-4666-0179-6.ch010
  • Sarstedt, M., Hair, J.F., Ringle, C.M., Thiele, K.O., & Gudergan, S.P. (2016). Estimation issues with PLS and CBSEM: Where the bias lies!. Journal of Business Research, 69(10), 3998-4010. https://doi.org/10.1016/j.jbusres.2016.06.007
  • Scarbrough, H. (2003). Knowledge Management, HRM and the Innovation Process. International Journal of Manpower, 24(5), 501-516. https://doi.org/10.1108/01437720310491053
  • Shmueli, G., Ray, S., Velasquez Estrada, J.M., & Chatla, S.B. (2016). The elephant in the room: Predictive performance of PLS models. Journal of Business Research, 69(10), 4552-4564. https://doi.org/10.1016/j.jbusres.2016.03.049
  • Shmueli, G., & Koppius, O. (2011). Predictive Analytics in Information Systems Research. MIS Quarterly, 35(3), 553-572. https://doi.org/10.2307/23042796
  • Serenko, A., Bontis, N., & Hull, E. (2016). An Application of the Knowledge Management Maturity Model: The Case of Credit Unions. Knowledge Management Research & Practice, 14(3), 338-352. https://doi.org/10.1057/kmrp.2014.37
  • Snowden, D. (2003). Innovation as an Objective of Knowledge Management. Part I: The Landscape of Management. Knowledge Management Research & Practice, 1(2), 113-119. https://doi.org/10.1057/palgrave.kmrp.8500014
  • SmartPLS. (2017). PLS Predict | SmartPLS. Retrieved October 10, 2017, from: https://www.smartpls.com/documentation/algorithms-and-techniques/predict
  • Stanovcic, T, Pekovic, S., & Bouziri, A. (2015). The Effect of Knowledge Management on Environmental Innovation. Baltic Journal of Management, 10(4), 413-431. https://doi.org/10.1108/BJM-01-2015-0012
  • Starbuck, W. (1992). Learning by Knowledge-Intensive Firms. Journal of Management Studies, 29(6), 713-740. https://doi.org/10.1111/j.1467-6486.1992.tb00686.x
  • Swan, J., Newell, S., Scarbrough, H., & Hislop, D. (1999). Knowledge Management and Innovation: Networks and Networking. Journal of Knowledge Management, 3(4), 262-275. https://doi.org/10.1108/13673279910304014
  • Teo, T.S.H., & Ranganathan, C. (2003). Leveraging IT Resources and Capabilities at the Housing and Development Board. Journal of Strategic Information Systems, 12(3), 229-249. https://doi.org/10.1016/j.jsis.2003.09.002
  • Turban, E., Aronson, E., Liang, T-P, Sharda, R., Delen, D., & King, D. (2010). Decision Support and Business Intelligence Systems. New Jersey, USA: Prentice Hall
  • Tushman, M.L. (1977). Special Boundary Roles in the Innovation Process. Administrative Science Quarterly, 22(4), 587-605. https://doi.org/10.2307/2392402
  • Urbach, N., & Ahlemann, F. (2010). Structural Equation Modeling in Information Systems Research Using Partial Least Squares. Journal of Information Technology Theory and Application, 11(2), 5-40
  • Venkatraman, N., & Ramanujam, V. (1986). Measurement of Business Performance in Strategy Research: A Comparison of Approaches. Academy of Management Review, 11(4), 801-814. https://doi.org/10.2307/258398
  • Wang, Z., & Wang, N. (2012). Knowledge Sharing, Innovation and Firm Performance. Expert Systems with Applications, 39(10), 8899-8908. https://doi.org/10.1016/j.eswa.2012.02.017
  • Wu, X., Dou, W., & Fan, Z., (2009). Shifting from knowledge exploitation to knowledge exploration in new product development: A case study on haier washing machine. International Conference on Information Management, Innovation Management and Industrial Engineering, Xi'an, China. https://doi.org/10.1109/ICIII.2009.584
  • Xu, J., & Quaddus, M. (2005).Adoption and Diffusion of Knowledge Management Systems: An Australian Survey. Journal of Management Development, 24(4), 335-361. https://doi.org/10.1108/02621710510591343