La importancia de la profundidad del contramovimiento en el ciclo estiramiento-acortamiento

  1. A. Sánchez-Sixto 1
  2. Andrew J. Harrison 2
  3. Pablo Floría 3
  1. 1 Centro de Estudios Universitarios Cardenal Spínola CEU. Bormujos (España)
  2. 2 University of Limerick. Limerick (Irlanda)
  3. 3 Universidad Pablo de Olavide. Sevilla (España)
Revista:
Revista Internacional de Medicina y Ciencias de la Actividad Física y del Deporte

ISSN: 1577-0354

Año de publicación: 2019

Volumen: 19

Número: 73

Páginas: 33-44

Tipo: Artículo

DOI: 10.15366/RIMCAFD2019.73.003 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Revista Internacional de Medicina y Ciencias de la Actividad Física y del Deporte

Resumen

El objetivo de la presente investigación fue determinar la influencia de las variables relacionadas con la aplicación de fuerza y el desplazamiento del centro de masas en las diferencias en la altura saltada entre el salto sin contramovimiento (SJ) y el salto con contramovimiento (CMJ). Participaron veintiséis hombres, realizando tres SJ y tres CMJ con 90° de flexión de rodilla. El desplazamiento del centro de masas y la fuerza media durante la fase de propulsión fueron significativamente superiores en el CMJ en comparación con el SJ, explicando el 75% de la diferencia entre los dos saltos y teniendo un 30% más de influencia el desplazamiento del centro de masas. No hubo diferencias en la fuerza máxima. Los resultados sugieren la necesidad de examinar el desplazamiento del centro de masas para interpretar adecuadamente las diferencias entre el SJ y el CMJ cuando el criterio establecido es 90° de flexión de rodilla.

Información de financiación

Financiadores

Referencias bibliográficas

  • Alexander, R. M. (1995). Leg design and jumping technique for humans, other vertebrates and insects. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 347, 235-248. doi: https://doi.org/10.1098/rstb.1995.0024.
  • Barker, L. A., Harry, J. R., & Mercer, J. A. (en prensa). Relationships Between Countermovement Jump Ground Reaction Forces and Jump Height, Reactive Strength Index, and Jump Time. Journal of Strength & Conditioning Research.
  • Bobbert, M. F., Casius, L. R., Sijpkens, I. W., & Jaspers, R. T. (2008). Humans adjust control to initial squat depth in vertical squat jumping. Journal of Applied Physiology, 105, 1428-1440. doi: https://doi.org/10.1152/japplphysiol.90571.2008.
  • Bobbert, M. F., Gerritsen, K. G., Litjens, M. C., & Van Soest, A. J. (1996). Why is countermovement jump height greater than squat jump height? Medicine and Science in Sports and Exercise, 28, 1402-1412. doi: https://doi.org/10.1097/00005768-199611000-00009.
  • Castagna, C., & Castellini, E. (2013). Vertical jump performance in Italian male and female national team soccer players. Journal of Strength & Conditioning Research, 27, 1156-1161. doi: https://doi.org/10.1519/JSC.0b013e3182610999.
  • Cormie, P., McBride, J. M., & McCaulley, G. O. (2009). Power-time, force-time, and velocity-time curve analysis of the countermovement jump: impact of training. Journal of Strength & Conditioning Research, 23, 177-186. doi: https://doi.org/10.1519/JSC.0b013e3181889324.
  • Feltner, M. E., Bishop, E. J., & Perez, C. M. (2004). Segmental and kinetic contributions in vertical jumps performed with and without an arm swing. Research Quarterly for Exercise and Sport, 75, 216-230. doi: https://doi.org/10.1080/02701367.2004.10609155.
  • González-Badillo, J. J., & Marques, M. C. (2010). Relationship between kinematic factors and countermovement jump height in trained track and field athletes. Journal of Strength and Conditioning Research, 24, 3443-3447. doi: https://doi.org/10.1519/JSC.0b013e3181bac37d.
  • Hébert-Losier, K., Jensen, K., & Holmberg, H. C. (2014). Jumping and hopping in elite and amateur orienteering athletes and correlations to sprinting and running. International Journal of Sports Physiology and Performance, 9, 993-999. doi: https://doi.org/10.1123/ijspp.2013-0486.
  • Hopkins, W., Marshall, S., Batterham, A., & Hanin, J. (2009). Progressive statistics for studies in sports medicine and exercise science. Medicine and Science in Sports and Exercise, 41, 3. doi: https://doi.org/10.1249/MSS.0b013e31818cb278.
  • Kibele, A. (1998). Possibilities and limitations in the biomechanical analysis of countermovement jumps: A methodological study. Journal of Applied Biomechanics, 14, 105-117. doi: https://doi.org/10.1123/jab.14.1.105.
  • Kirby, T. J., McBride, J. M., Haines, T. L., & Dayne, A. M. (2011). Relative net vertical impulse determines jumping performance. Journal of Applied Biomechanics, 27, 207-214. doi: https://doi.org/10.1123/jab.27.3.207.
  • Kopper, B., Ureczky, D., & Tihanyi, J. (2012). Trunk position influences joint activation pattern and physical performance during vertical jumping. Acta Physiologica Hungarica, 99, 194-205. doi: https://doi.org/10.1556/APhysiol.99.2012.2.13.
  • Linthorne, N. P. (2001). Analysis of standing vertical jumps using a force platform. American Journal of Physics, 69, 1198-1204. doi: https://doi.org/10.1119/1.1397460.
  • Lloyd, R. S., Oliver, J. L., Hughes, M. G., & Williams, C. A. (2011). The influence of chronological age on periods of accelerated adaptation of stretch-shortening cycle performance in pre and postpubescent boys. Journal of Strength and Conditioning Research, 25, 1889-1897. doi: https://doi.org/10.1519/JSC.0b013e3181e7faa8.
  • Markovic, S., Mirkov, D. M., Knezevic, O. M., & Jaric, S. (2013). Jump training with different loads: effects on jumping performance and power output. European Journal of Applied Physiology, 113, 2511-2521. Doi: https://doi.org/10.1007/s00421-013-2688-6.
  • Nuzzo, J. L., McBride, J. M., Cormie, P., & McCaulley, G. O. (2008). Relationship between countermovement jump performance and multijoint isometric and dynamic tests of strength. Journal of Strength and Conditioning Research, 22, 699-707. doi: https://doi.org/10.1519/JSC.0b013e31816d5eda.
  • Salles, A. S., Baltzopoulos, V., & Rittweger, J. (2011). Differential effects of countermovement magnitude and volitional effort on vertical jumping. European Journal of Applied Physiology, 111, 441-448. doi: https://doi.org/10.1007/s00421-010-1665-6
  • Samozino, P., Morin, J.-B., Hintzy, F., & Belli, A. (2010). Jumping ability: a theoretical integrative approach. Journal of Theoretical Biology, 264, 11-18. doi: https://doi.org/10.1016/j.jtbi.2010.01.021.
  • Sánchez-Sixto, A., Harrison, A., & Floría, P. (2016). Simple instructions on the crouch position improve performance in the countermovement jump. 34 International Conference on Biomechanics in Sports, 949-952.
  • Street, G., McMillan, S., Board, W., Rasmussen, M., & Heneghan, J. M. (2001). Sources of error in determining countermovement jump height with the impulse method. Journal of Applied Biomechanics, 17, 43-54. doi: https://doi.org/10.1123/jab.17.1.43.
  • Ugrinowitsch, C., Tricoli, V., Rodacki, A. L., Batista, M., & Ricard, M. D. (2007). Influence of training background on jumping height. Journal of Strength and Conditioning Research, 21, 848-852.
  • Vetter, R. E. (2007). Effects of six warm-up protocols on sprint and jump performance. Journal of Strength and Conditioning Research, 21, 819-823.
  • Yang, W. W., Chou, L. W., Chen, W. H., Shiang, T. Y., & Liu, C. (en prensa). Dual-frequency whole body vibration enhances vertical jumping and change-of-direction ability in rugby players. Journal of Sport and Health Science.