Evaluation of the level of physical activity through musculo-articular stiffness in young adults

  1. Federico París García
  2. Miguel Ángel Oviedo Caro
  3. Javier Bueno Antequera
Revista:
International Journal of Developmental and Educational Psychology: INFAD. Revista de Psicología

ISSN: 0214-9877

Año de publicación: 2017

Título del ejemplar: La psicología hoy: retos, logros y perspectivas de futuro. Psicología de la Adolescencia

Volumen: 1

Número: 2

Páginas: 447-458

Tipo: Artículo

DOI: 10.17060/IJODAEP.2017.N1.V2.957 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: International Journal of Developmental and Educational Psychology: INFAD. Revista de Psicología

Resumen

El propósito del estudio consiste en evaluar el nivel de actividad física de adultos jóvenes mediante la obtención de la rigidez Musculo-articular y analizar su correlación con el rendimiento físico medido en capacidad de salto. El protocolo propuesto engloba un test Músculo-articular de ambas piernas, un test de Máxima contracción isométrica (MCIV) voluntaria en las mismas condiciones, un test de salto de contramovimiento, y un protocolo de salto de drop jump desde diferentes alturas (20, 40 y 60 cm). 21 sujetos adultos jóvenes sanos (12 hombre y 9 mujeres) conforman la muestra. Las variables mecánicas son: fuerza (f), Rigidez Músculo-articular (k) y rigidez Músculoarticular Unitaria (ku). Variables físicas: Altura de vuelo de salto (h) y fuerza generada (f). Se llevó a cabo un Anova de mediciones repetidas para analizar la influencia del género y lateralidad y una correlación de Pearson para analizar la relación entre parámetros mecánicos y parámetros físicos. Los resultados obtenidos muestran una simetría clara tanto en parámetros físicos como en parámetros mecánicos. Se obtuvieron diferencias significativas entre hombres y mujeres (f y k) (p<0.05) siendo en términos absolutos mayores en hombres que en mujeres pero no en términos relativos (ku). Se obtuvo una clara correlación entre parámetros mecánicos y MCIV términos absolutos (p<0.05). Ku permite comparar entre diferentes sujetos pero su interpretación no es tan intuitiva como en términos absolutos debido a la aplicación del modelo de Hill sobre la respuesta mecánica de los complejos músculo-tendón que establece una relación no lineal entre f y k.

Referencias bibliográficas

  • Arampatzis, A., De Monte, G., Karamanidis, K., Morey-Klapsing, G., Stafilidis, S., & Brüggemann, G.- P. (2006). Influence of the muscle-tendon unit’s mechanical and morphological properties on running economy. The Journal of Experimental Biology, 209(Pt 17), 3345–57. https://doi.org/10.1242/jeb.02340
  • Arampatzis, a, Schade, F., Walsh, M., & Brüggemann, G. P. (2001). Influence of leg stiffness and its effect on myodynamic jumping performance. Journal of Electromyography and Kinesiology : Official Journal of the International Society of Electrophysiological Kinesiology, 11(5), 355–64. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11595555
  • Babic, J., & Lenarcic, J. (2004). In vivo determination of triceps surae muscle-tendon complex viscoelastic properties. European Journal of Applied Physiology, 92(4–5), 477–484. Retrieved from h t t p : / / w w w . s c o p u s . c o m / i n w a r d / r e c o r d . u r l ? e i d = 2 - s 2 . 0 -4544292372&partnerID=40&md5=8991b8a621bb0643c419f6cc7958b7db
  • Blackburn, J. T., Padua, D. a, Weinhold, P. S., & Guskiewicz, K. M. (2006). Comparison of triceps surae structural stiffness and material modulus across sex. Clinical Biomechanics (Bristol, Avon), 21(2), 159–67. https://doi.org/10.1016/j.clinbiomech.2005.08.012
  • Butler, R. (2003). Lower extremity stiffness: implications for performance and injury. Clinical Biomechanics, 18(6), 511–517. https://doi.org/10.1016/S0268-0033(03)00071-8
  • Cavagna, G. A. (1970). Elastic bounce of the body. J Appl Physiol, 29(3), 279–282. Retrieved from http://jap.physiology.org/content/29/3/279.full-text.pdf+html
  • Ditroilo, M., Watsford, M., & De Vito, G. (2011). Validity and inter-day reliability of a free-oscillation test to measure knee extensor and knee flexor musculo-articular stiffness. Journal of Electromyography and Kinesiology : Official Journal of the International Society of Electrophysiological Kinesiology, 21(3), 492–8. https://doi.org/10.1016/j.jelekin.2010.11.004
  • Ditroilo, M., Watsford, M., Murphy, A., & De Vito, G. (2011). Assessing musculo-articular stiffness using free oscillations: theory, measurement and analysis. Sports Medicine (Auckland, N.Z.), 41(12), 1019–32. https://doi.org/10.2165/11591470-000000000-00000
  • Ditroilo, M., Watsford, M., Murphy, A., & De Vito, G. (2013). Sources of variability in musculo-articular stiffness measurement. PloS One, 8(5), e63719. https://doi.org/10.1371/journal.pone.0063719
  • Faria, A., Gabriel, R., Abrantes, J., Brás, R., & Moreira, H. (2009). Triceps-surae musculotendinous stiffness: relative differences between obese and non-obese postmenopausal women. Clinical Biomechanics (Bristol, Avon), 24(10), 866–71. https://doi.org/10.1016/j.clinbiomech.2009.07.015
  • Faria, A., Gabriel, R., Abrantes, J., Brás, R., & Moreira, H. (2010). The relationship of body mass index, age and triceps-surae musculotendinous stiffness with the foot arch structure of postmenopausal women. Clinical Biomechanics (Bristol, Avon), 25(6), 588–93. https://doi.org/10.1016/j.clinbiomech.2010.02.014
  • Farley, C. T., Blickhan, R., Saito, J., & Taylor, C. R. (1991). Hopping frequency in humans: a test of how springs set stride frequency in bouncing gaits. Journal of Applied Physiology (Bethesda, Md. : 1985), 71(6), 2127–32. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1778902
  • Farley, C. T., & Morgenroth, D. C. (1999). Leg stiffness primarily depends on ankle stiffness during human hopping. Journal of Biomechanics, 32(3), 267–73. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10093026
  • Fukashiro, S., Noda, M., & Shibayama, a. (2001). In vivo determination of muscle viscoelasticity in the human leg. Acta Physiologica Scandinavica, 172(4), 241–8. https://doi.org/10.1046/j.1365-201x.2001.00866.x
  • Granata, K. P., Wilson, S. E., Massimini, a K., & Gabriel, R. (2004). Active stiffness of the ankle in response to inertial and elastic loads. Journal of Electromyography and Kinesiology : Official Journal of the International Society of Electrophysiological Kinesiology, 14(5), 599–609. https://doi.org/10.1016/j.jelekin.2004.03.005
  • Granata, K. P., Wilson, S. E., & Padua, D. a. (2002). Gender differences in active musculoskeletal stiffness. Part I. Quantification in controlled measurements of knee joint dynamics. Journal of Electromyography and Kinesiology : Official Journal of the International Society of Electrophysiological Kinesiology, 12(2), 119–26. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11955984
  • Harrison, A. J., Keane, S. P., & Coglan, J. (2004, August). Force-velocity relationship and stretchshortening cycle function in sprint and endurance athletes. Journal of Strength and Conditioning Research / National Strength & Conditioning Association. https://doi.org/10.1519/13163.1
  • Hobara, H., Kimura, K., Omuro, K., Gomi, K., Muraoka, T., Iso, S., & Kanosue, K. (2008). Determinants of difference in leg stiffness between endurance- and power-trained athletes. Journal of Biomechanics, 41(3), 506–14. https://doi.org/10.1016/j.jbiomech.2007.10.014
  • Karamanidis, K., Albracht, K., Braunstein, B., Moreno Catala, M., Goldmann, J.-P., & Brüggemann, G.-P. (2011). Lower leg musculoskeletal geometry and sprint performance. Gait & Posture, 34(1), 138–41. https://doi.org/10.1016/j.gaitpost.2011.03.009
  • Kongsgaard, M., Nielsen, C. H., Hegnsvad, S., Aagaard, P., & Magnusson, S. P. (2011). Mechanical properties of the human Achilles tendon, in vivo. Clinical Biomechanics (Bristol, Avon), 26(7), 772–7. https://doi.org/10.1016/j.clinbiomech.2011.02.011
  • Kubo, K., Kawakami, Y., Fukunaga, T., James, R. S., Navas, C. A., & Herrel, A. (1999). Influence of elastic properties of tendon structures on jump performance in humans Influence of elastic properties of tendon structures on jump performance in humans. Journal of Applied Physiology (Bethesda, Md. : 1985), 87, 2090–2096.
  • Laffaye, G., Bardy, B. G., & Durey, A. (2005). Leg Stiffness and Expertise in Men Jumping. Medicine & Science in Sports & Exercise, 37(4), 536–543. https://doi.org/10.1249/01. MSS.0000158991.17211.13
  • McLachlan, K. a, Murphy, A. J., Watsford, M. L., & Rees, S. (2006). The interday reliability of leg and ankle musculotendinous stiffness measures. Journal of Applied Biomechanics, 22(4), 296–304. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/17293626
  • Murphy, A. J., Watsford, M. L., Coutts, A. J., & Pine, M. J. (2003). Reliability of a test of musculotendinous stiffness for the triceps-surae. Physical Therapy in Sport, 4(4), 175–181. https://doi.org/10.1016/S1466-853X(03)00077-4
  • Niu, W., Wang, Y., He, Y., Fan, Y., & Zhao, Q. (2011). Kinematics, kinetics, and electromyogram of ankle during drop landing: a comparison between dominant and non-dominant limb. Human Movement Science, 30(3), 614–23. https://doi.org/10.1016/j.humov.2010.10.010
  • Padua, D., & Carcia, C. (2005). Gender differences in leg stiffness and stiffness recruitment strategy during two-legged hopping. Journal of Motor …, 37(2), 111–125. Retrieved from http://www.tandfonline.com/doi/abs/10.3200/JMBR.37.2.111-126
  • París-García, F., Barroso, A., Cañas, J., Ribas, J., & París, F. (2013). A critical study on the experimental determination of stiffness and viscosity of the human triceps surae by free vibration methods. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine, 227(9), 935–54. https://doi.org/10.1177/0954411913487851
  • Scholz, M. N., Bobbert, M. F., Soest, A. J. Van, Clark, J. R., & Heerden, J. Van. (2008). Running biomechanics: shorter heels , better economy. Journal of Experimental Biology, 3266–3271. https://doi.org/10.1242/jeb.018812
  • Shorten, M. R. (1987). Muscle Elasticity and Human Performance. Medicine and Science in Sports and Exercise, 25, 1–18.
  • Walshe, a D., Wilson, G. J., & Murphy, a J. (1996). The validity and reliability of a test of lower body musculotendinous stiffness. European Journal of Applied Physiology and Occupational Physiology, 73(3–4), 332–9. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8781865
  • Wang, D., De Vito, G., Ditroilo, M., Fong, D. T. P., & Delahunt, E. (2015). A comparison of muscle stiffness and musculoarticular stiffness of the knee joint in young athletic males and females. Journal of Electromyography and Kinesiology, 25(3), 495–500. https://doi.org/10.1016/j.jelekin.2015.03.003
  • Williams III, D. S., Davis, I. M., Scholz, J. P., Hamill, J., & Buchanan, T. S. (2004). High-arched runners exhibit increased leg stiffness compared to low-arched runners. Gait and Posture, 19(3), 263–269. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-2342528512&partnerID=40&md5=005ab6d7d748a1facc6b21e6db10680b
  • Wilson, G. J., Murphy, A. J., & Pryor, J. F. (1994). Musculotendinous stiffness: its relationship to eccentric, isometric, and concentric performance. J Appl Physiol, 76(6), 2714–2719. Retrieved from http://jap.physiology.org/content/76/6/2714
  • Zinder, S. M., Granata, K. P., Shultz, S. J., & Gansneder, B. M. (2009). Ankle bracing and the neuromuscular factors influencing joint stiffness. Journal of Athletic Training, 44(4), 363–9. https://doi.org/10.4085/1062-6050-44.4.363