Proceso penal y justicia automatizada
ISSN: 1696-9642
Año de publicación: 2021
Número: 53
Tipo: Artículo
Otras publicaciones en: Revista General de Derecho Procesal
Resumen
The so-called “automated justice” is gaining more and more ground in the criminal process. Thus, important decisions for the advancement of the criminal process and for the solution of the case are based, more and more frequently, on the results obtained through the automated treatment of personal data of the people involved in it. It is one more step on the path begun since the 70s of the 20th century with the automation of the location, collection, analysis and treatment of the traces, vestiges, elements and evidence related to crime and which serve to clarify and identify his author. Contrary to what it might seem, the evolution of artificial intelligence and its application to the criminal process has not determined a recent trend towards the so-called “automated justice”, but has increased and accelerated it quantitatively, but above all qualitatively, to investigation sources material and personal, subsequent sources of evidence, as well as objective data and subjective or personal data. All this represents an important transformation in the processing of the different phases of the criminal process. The automated treatment of various sources of investigation made it possible to refine the identification of the possible author of the criminal act, from there it has been extended to other sources of investigation and, finally, an automated "intelligent" treatment of the criminal case is being reached in its joint, with significance to subsequent prosecution (sources of evidence) and decision. "Digital forensics", "computer forensics", "mobile forensics" are today essential to investigate, prosecute and decide the criminal process, and enable work under "models of forensic intelligence" that involves the automated processing of massive data using increasingly more algorithms sophisticated that seek to improve the effectiveness of both criminal investigation and evidentiary activity in the oral trial and the final decision. The automation of the criminal process is unstoppable, inevitable, and can have advantages to achieve a fairer, more accessible, more efficient criminal justice. But it also implies threats to the rights and guarantees inherent in the criminal process, think of the right to fair trial or the presumption of innocence. This is how the Council of Europe has expressed itself and this is where EU Directive 680/2016 fits, which regulates, among other issues, the protection of personal data in criminal proceedings and whose article 11 prohibits decisions based solely on automated processing of personal data unless certain guarantees are given, obligatorily the guarantee of human intervention.. After an examination of the Directive, and the recent Preliminary Draft of the Organic Law for its transposition into the Spanish legal system, the problems of the concretion of "human intervention" are revealed: how, when and where should human intervention take place in the automated processing chain leading to a result or decision; and, since it is not possible to do without the human element, what must be done to guarantee that his intervention is material and not merely formal, that is, that he becomes a real participant in the decision and does not limit himself to uncritically validating the result or the decision that comes from automated processing.
Referencias bibliográficas
- SÁNCHEZ RUBIO, A., La prueba científica en la justicia penal, Tirant lo Blanch, Valencia, 2019.
- CORDA, A., “Neurociencias y Derecho Penal desde la perspectiva del Derecho Procesal”, en Neurociencia y Proceso Judicial, Marcial Pons, 2013, páginas 109-144.
- SÁNCHEZ RUBIO, A., “El uso del test p300 en el proceso penal español: algunos aspectos controvertidos”, Revista Electrónica de Ciencia Penal y Criminología, 18-04, 2016, http://criminet.ugr.es/recpc/18/recpc18-04.pdf, 23 páginas.
- ARCE, R., FARIÑA, F. “Psicología forense experimental. Testigos y testimonio. Evaluación cognitiva de la veracidad de testimonios y declaraciones”, en S. Delgado (Dir. Tratado), y S. Delgado, y J. M. Maza (Coords. Vol.), Tratado de medicina legal y ciencias forenses: Vol. V. Psiquiatría legal y forense, Barcelona, Bosch., 2013, páginas 21-46.
- ARCE, R. “Análisis de contenido de las declaraciones de testigos: Evaluación de la validez científica y judicial de la hipótesis y la prueba forense” [Content Analysis of the Witness Statements : Evaluation of the Scientific and Judicial Validit y of the Hypothesis and the Forensic Proof], AcciónPsicológica, 14(2), 2017, páginas 171- 190, https://doi-org.umbral.unirioja.es/10.5944/ap.14. l. 21347.
- CABEZAS GARCÍA, S., “Revisión de las técnicas de carga cognitiva inducida en el ámbito de la detección de la mentira” Behavior & Law Journal, 5 (1), 2019, 40-51.
- SOBA BRACESCO, I. M. “De la declaración representativa a la reconstructiva. las opiniones de los testigos y el caso del testigo técnico”, Revista Ítalo-Española de Derecho Procesal Vol. 2, Madrid, 2019, 24 páginas.
- COPPOLA, F., “Mapping the Brain to Predict Antisocial Behaviour: New Frontiers in Neurocriminology, ‘New’ Challenges for Criminal Justice.”, UCL Journal of Law and Jurisprudence - Special Issue, 1 (1), Article 5. 10.14324/111.2052-1871.099. (2018), (UCL: University College London)
- LUNA, F., ESCAMILLA, V. Y CORENA, A., “La neurociencia como medio de suplir vacíos legales:análisis a la prueba del dolor”, JURÍDICAS CUC, 15(1), 2019, páginas 96-134. DOI: http://dx.doi.org.umbral.unirioja.es/10.17981/juridcuc.15.1.2019.04
- SPAIN BRADLEY, A., “The Disruptive Neuroscience of Judicial Choice”, 9 University of California Irvine Law Review 1, (2018), 52 páginas.
- WILSON, T., Automated fingerprint identification systems: technology and policy issues, Woodard, P. L., 1987, U.S. Department of Justice, Bureau of Justice Statistics.
- WEGSTEIN, J. H., Automated classification and identification of fingerprints, National Institute of Standards and Technology (NIST), United States of America, 1974.
- PERALTA, D., TRIGUERO, I., GARCÍA, S., SAEYS, Y., BENÍTEZ, J.M., HERRERA, F., “On the use of convolutional neural networks for robust classification of multiple fingerprint captures”, International Journal of Intelligent Systems, 33, 2017, páginas 213-230.
- KENNETH R. MOSES; PETER HIGGINS; MICHAEL MCCABE; SALIL PROBHAKAR; SCOTT SWANN, “Chapter 6: Sistema Automatizado de Identificacion de Huellas Dactilares (AFIS), El Libro de Referencia de las Huellas Dactilares, NCJ 250979, August 2017, 10 páginas, https://www.ncjrs.gov/pdffiles1/nij/250979.pdf, (NCJRS: National Criminal Justice Reference Service, USA).
- VORBURGER, T. V., SONG, J., PETRACO, N., “Topography measurements and applications in ballistics and tool mark identifications”, Surface Topography: Metrology and Properties, 4, 2016, 013002 doi:10.1088/2051-672X/4/1/013002.
- GHANI, N. A. M., LIONG, C. Y., & JEMAIN, A. A., (2018) “Neurocomputing approach for firearm identification”, Pertanika Journal of Science and Technology, 26(1), 2018, páginas 341-352.
- ÁLVAREZ DE NEYRA KAPPLER, S. La prueba de ADN en el proceso penal, Comares, Granada 2008.
- GARZÓN FLORES, J. M., La prueba de ADN en el proceso penal, La Ley-Wolters Kluwert, 2018.
- MARCIANO, M. A., ADELMAN, J. D., “PACE: Probabilistic Assessment for Contributor Estimation— A machine learning-based assessment of the number of contributors in DNA mixtures”, Forensic Science International: Genetics Volume 27, March 01, 2017, páginas 82-91.
- CANEPPELE, S., RIBEAUX, O., “Forensic intelligence”, “The Routledge International Handbook of Forensic Intelligence and Criminology”, Routledge, 2017, páginas 136-148.
- BRUENISHOLZ, E., PRAKASH, S., ROSS, A., MORELATO, M., O'MALLEY, T., RAYMOND, M. A., RIBAUX, O., ROUX, C. P., WALSH, S., “The Intelligent Use of Forensic Data: An Introduction to the Principles”, Forensic Science Policy & Management: An International Journal, Vol. 7, NOS 1-2, 2016, páginas 21-29, DOI: 10.1080/19409044.2015.1084405.
- GROSSRIEDER, L., RIBEAUX, O., “Towards Forensic Whistleblowing? From Traces to Intelligence”, Policing: A Journal of Policy and Practice, Volume 13, Issue 1, March 2019, páginas 80-93, https://doi-org.umbral.unirioja.es/10.1093/police/pax039
- SPAULDING, J. S., "Evidence Utility in Forensic Intelligence Models", Graduate Theses, Dissertations, and Problem Reports, 6697, West Virginia University, 2107, https://researchrepository.wvu.edu/etd/6697
- SAINI M., KAPOOR A. K., “Biometrics in Forensic Identification: Applications and challenges” Journal of Forensic Medicine, 1:108, 2016, doi: 10.4172/2472-1026 .1000108
- GERADTS, Z., “Digital, big data and computational forensics”, Forensic Sciences Research, 3:3, 2018, páginas 179-182, DOI: 10.1080/20961790.2018.1500078
- AA.VV. Digital Forensics, ed. André Arnes, WILEY, 2017; AA. VV., Digital Forensics and Cyber Crime, 10th International EAI Conference, ICDF2C 2018, New Orleans, Louisiana, USA, September 10-12, 2018, eds. Breitinger, F., Baggili, I., Springer, 2018.
- NELSON, B., PHILLIPS, A., STEUART, C., Guide to Computer Forensics and Investigations, 6th Edition, Cengage, 2019.
- REIBER, L., Mobile Forensic Investigations: A Guide to Evidence Collection, Analysis, and Presentation, Second Edition, McGraw Hill, 2019.
- SHAREVSKI. F., Mobile Network Forensics: Emerging Research and Opportunities (Advances in Digital Crime, Forensics, and Cyber Terrorism), IGI Global, 2018.
- BRADY, OWEN D., Exploiting Digital Evidence Artefacts Finding and joining digital dots, dissertation submitted for the degree of Doctor of Philosophy, Department of Informatics, King’s College London, April 2018, https://kclpure.kcl.ac.uk/portal/files/95696488/2018_Brady_Owen_0966104_ethesis.pdf, páginas 5-6.
- HARICHANDRAN, V. S., WALNYCKY, D., BAGGILI, I., BREITINGER, F., “CuFA: A more formal definition for digital forensic artifacts”, Digital Investigation 18, 2016, pages S125-S137.
- AL FAHDI, M., CLARKE, N. L., LI, F., FURNELL, S. M., A Suspect-Oriented Intelligent and Automated Computer Forensic Analysis, Digital Investigation 18 (2016), pages 65-76.
- SRIHARI, S. N., Statistical Examination of Handwriting Characteristics Using Automated Tools, National Institute of Justice (NIJ), U.S. Departement of Justice, February 2013, 85 páginas.
- DARWISH, S. M., EL-ZOGHABI, A. A., ELGOHARY, H. M., “Bio-inspired Expert System for Identifying Questioned Documents’ Printer Source Suitable for Digital Forensics”, in Proceedings of the 2019 8th International Conference on Software and Information Engineering (ICSIE ’19), Association for Computing Machinery, New York, NY, USA, 2019, 100–104, DOI:https://doi-org.umbral.unirioja.es/10.1145/3328833.3328843.
- DEVI, P., THIMMARASA V. B., MEHROTRA, V., SINGLA, V., “Automated Dental Identification System: An Aid to Forensic Odontology”, Journal of Indian Academy of Oral Medicine and Radiology, July-September 2011; 23(3), páginas S360-364.
- PRANOTI V. R., MAHAJAN, K. J., “Review of dental biometric in human forensic identification”, International Research Journal of Engineering and Technology (IRJET), Volume 03, Issue 04, Apr-2016, páginas 1685-1688.
- MEMON, N., PAL, A., “Automated Reassembly of File Fragmented Images Using Greedy Algorithms”, IEEE Transactions on Image Processing, Vol. 15, número 2, february 2006, páginas 385-393.
- WU Xianyan, HAN Qi, NIU Xiamu and ZHANG Hongli, “Novel Similarity Measurements for Reassembling Fragmented Image Files”, Chinese Journal of Electronics Volumen 28, Num. 2, March. 2019, pages 331-337.
- HOUSE, C., MEYER, R., “Preprocessing and Descriptor Features for Facial Micro-Expression Recognition”, 5 junio 2015, https://pdfs.semanticscholar.org/674b/1d5dc50f8306645aa4caf5d82a8c5d1d5222.pdf, 8 páginas
- BURGOON, J. K., “Separating the Wheat From the Chaff: Guidance From New Technologies for Detecting Deception in the Courtroom”, Frontiers in Psychiatry, 17 january 2019, https://www.frontiersin.org/articles/10.3389/fpsyt.2018.00774/full.
- GHAZIASGAR, M., CRUZ, N.D., BAGULA, A.B., & CONNAN, J., “Visual Data Mining: A Great Opportunity for Criminal Investigation”, en Data Mining Trends and Applications in Criminal Science and Investigations, eds: O. E. Isafiade, A. B. Bagula, 2016, páginas 112-141.
- AL-KAWAZ, H., CLARKE, N., FURNELL, S., LI, F., ALRUBAN, A., “Advanced Facial Recognition for Digital Forensics”, Proceedings of the 17th European Conference on Information Warfare and Security ECCWS 2018, Ed. A. Josang, ACPI, UK, 2018, pages 11-19.
- AL FAHDI, M., CLARKE, N. L., FURNELL, S. M., “Towards an Automated Forensic Examiner (AFE) based upon criminal profiling & artificial intelligence”, Proceedings of the 11th Australian Digital Forensics Conference, ed. Craig Valli, Security Research Institute, Edith Cowan University, Australia, 2013, pages 1-9.
- CANEPPELE, S., RIBEAUX, O., “Forensic intelligence”, “The Routledge International Handbook of Forensic Intelligence and Criminology”, cit., páginas 137-138.
- PRAMANIK, I.; LAU, RAYMOND Y.K.; AND CHOWDHURY, K. H., "Automatic Crime Detector: A Framework for Criminal Pattern Detection in Big Data Era" (2016). PACIS (Pacific Asia Conference on Information Systems) 2016 Proceedings, 10 páginas, https://aisel.aisnet.org/cgi/viewcontent.cgi?article=1266&context=pacis2016.
- CRISPINO, F., ROSSY, Q., RIBAUX, O., ROUX, C., “Education and training in forensic intelligence: a new challenge”, Australian Journal of Forensic Sciences, vol. 47, Issue 1, 2015, páginas 49-60.
- BARMPATSALOU, K., CRUZ, T., MONTEIRO, E., SIMOES, P., “From fuzziness to criminal investigation: An inference system for Mobile Forensics”, Intrusion Detection and Prevention for Mobile Ecosystems, Chapter 5, CRC Press, 2019, páginas 117-134, usado en la versión https://www.researchgate.net/profile/Konstantia_Barmpatsalou/publication/312474661_From_fuzziness_to_criminal_investigation_An_inference_system_for_Mobile_Forensics/links/59b28636458515a5b48cf528/From-fuzziness-to-criminal-investigation-An-inference-system-for-Mobile-Forensics.pdf
- BARMPATSALOU, K., CRUZ, T., MONTEIRO, E., SIMOES, P., “Current and Future Trends in Mobile Device Forensics: A Survey”, ACM Computing Surveys, Vol. 51, 2018, article 7, pages 1-32.
- Conlan, K., Ibrahim Baggili, I., Frank Breitinger, F., "Anti-forensics: Furthering digital forensic science through a new extended, granular taxonomy", Digital Investigation 18, 2016, pages S66-S75.
- AA.VV. Estándares de prueba y prueba científica. En sayos de epistemología jurídica, ed. Carmen Vázquez, Marcial Pons, 2013.
- “Guidelines on how to drive change towards cyberjustice - Stock-taking of tools deployed and summary of good practices”, aprobado en diciembre de 2016 y se publicó en 2017, estando accesible on-line en https://edoc.coe.int/en/efficiency-of-justice/7501-guidelines-on-how-to-drive-change-towards-cyberjustice-stock-taking-of-tools-deployed-and-summary-of-good-practices.html
- “European Ethical Charter on the Use of Artificial Intelligence in Judicial Systems and their environment”, adoptada en diciembre de 2018 y publicada en 2019, accesible digitalmente en https://www.coe.int/en/web/cepej/cepej-european-ethical-charter-on-the-use-of-artificial-intelligence-ai-in-judicial-systems-and-their-environment.
- WELLS, H., “The techno-fix versus the fair cop: procedural (in)justice and automated speed limit enforcement”, British Journal of Criminology, vol. 48, Issue 6, 2008, pages 798–817.
- DELGADO MARTÍN, J., “La protección de datos personales en el proceso penal: Directiva 2016/680”, https://elderecho.com/la-proteccion-datos-personales-proceso-penal-directiva-2016-680, 27 de febrero de 2019.
- PALMA ORTIGOSA, A., “Garantías jurídicas en materia de protección de datos frente al uso de algoritmos en el contexto policial y judicial”, comunicación a la Mesa 3 “Perspectiva constitucional de los avances tecnológicos en seguridad”, XVII Congreso de la ACE: Seguridad y libertad en el sistema democrático, Santiago de Compostela, 4 y 5 de abril de 2019, páginas 15-16, consultado el 10 de abril de 2020 en la página web https://www.acoes.es/congreso-xvii/wp-content/uploads/sites/3/2019/03/Garant%C3%ADas-jur%C3%ADdicas-en-materia-de-protección-de-datos-frente-al-uso-de-algoritmos-en-el-contexto-policial-y-judicial.pdf.
- Libro Blanco sobre la Inteligencia Artificial, un enfoque europeo orientado a la excelencia y a la confianza, Comisión Europea, Bruselas, 19 de febrero de 2020, COM (2020) 65 final, páginas 26-27, accesible en https://op.europa.eu/en/publication-detail/-/publication/aace9398-594d-11ea-8b81-01aa75ed71a1/language-es/format-PDF/source-118744296, con posibilidad de descargar el documento en español.
- ROIG A., "Safeguards for the right not to be subject to a decision based solely on automated processing (Article 22 GDPR)", in European Journal of Law and Technology, Vol. 8, Num. 3, 2017, pages 1-17.
- BRKAN, M., “Do algorithms rule the world? Algorithmic decision-making in the framework of the GDPR and beyond”, International Journal of Law and Information Technology, Volume 27, Issue 2, Summer 2019, Pages 91–121, https://doi-org.umbral.unirioja.es/10.1093/ijlit/eay017.
- BRKAN, M., “Do algorithms rule the world? Algorithmic decision-making in the framework of the GDPR and beyond”, International Journal of Law and Information Technology, Volume 27, Issue 2, Summer 2019, Pages 91–121, https://doi-org.umbral.unirioja.es/10.1093/ijlit/eay017
- GUZMÁN FLUJA, V., “Sobre la aplicación de la inteligencia artificial a la solución de conflictos”, Justicia civil y penal en la era global, coord. Silvia Barona Vilar, 2017, ISBN 978-84-9143-918-9, págs. 67-122.
- HENDERSON, S. E., “Should Robots Prosecute and Defend?”, Oklahoma Law Review, vol. 72, núm. 1, 2019, pages 1-19.
- SCHOFIELD, D., “The use of computer generated imagery in legal proceedings”, Digital Evidence and Electronic Signature Law Review, 13 (2016), páginas 3-25.
- COLEMAN, T., REICHHERZER, C., “Jury visualisation of crime scenes in virtual reality”, Bulletin (Law Society of South Australia), vol. 41, Issue 5 , Jun 2019, pages 26-27.
- ZAVRŠNIK, A., “Criminal justice, artificial intelligence systems, and human rights”, ERA Forum 20, 2020, pages 567–583, https://doi-org.umbral.unirioja.es/10.1007/s12027-020-00602-0
- SOURDIN, T., “Judge v robot? Artificial Intelligence and judicial decision-making”, University of New South Wales Law Journal, Volume 41(4), 2018, pages 1114-1133.
- LÓPEZ BARONI, M.J., “Las narrativas de la inteligencia artificial”, Revista Bioética y Derecho, núm. 46, Barcelona, 2019.
- BARMPATSALOU, K., CRUZ, T., MONTEIRO, E., SIMOES, P., “From fuzziness to criminal investigation: An inference system for Mobile Forensics”, Intrusion Detection…, cit., páginas 8 y 11-12;
- SAN PIETRO, D., KAMMRATH, B. W., PETER, R., & CRIM, D., (2018), “Is forensic science in danger of extinction?” Science & Justice, Vol. 59, Issue 2, 2019, páginas 199-202, doi: 10.1016/j.scijus.2018.11.003
- MARKS, A., BOWLING, B., KEENAN, C., “Automatic justice? Technology, Crime and Social Control”, Queen Mary University of London, School of Law, Legal Studies Research Paper No. 211/2015, TLI Think! Paper 01/2015, 34 páginas, accedido en https://pdfs.semanticscholar.org/47b2/4886195ca55bdead264746b47489b9782e65.pdf?_ga=2.34989153.1504858155.1585694628-291910325.1585385997
- GANDY JR, O. H., “The Algorithm made me do it! Technological transformations of the criminal justice system”, The Political Economy of Communication, vol. 7, num. 2, 2019, 3–27.
- SAKS, M. J., KOEHLER, J. J., “The Coming Paradigm Shift in Forensic Identification Science”, SCIENCE, , vol. 309, 5 de agosto de 2005, páginas 892-895.
- ASQUITH, A., GRAEME, H., “Let the robots do it! - Taking a look at Robotic Process Automation and its potential application in digital forensics”, Forensic Sciences International: Reports, vol. 1, November 2019, 6 páginas, accedido en formato electrónico en la página web https://reader.elsevier.com/reader/sd/pii/S2665910719300076?token=D20372CF607EF3173F6A7B358293B2F7D83108B76513E568DD636429F8B9DC5B590D287A63EC95C60D99C34A45E6E04C
- MURPHY, E., “The New Forensics: Criminal Justice, False Certainty, and the Second Generation of Scientific Evidence”, California Law Review, vol. 95, 2006, pages 721-797.
- DRORr, I. E., “Human expert performance in forensic decision making: Seven different sources of bias”, Australian Journal of Forensic Sciences, vol. 49, Issue 5, 2017, páginas 541-547.
- GREEN, B., “Fair” Risk Assessments: A Precarious Approach for Criminal Justice Reform, 5th Workshop on Fairness, Accountability, and Transparency in Machine Learning, 2018, https://scholar.harvard.edu/files/bgreen/files/18-fatml.pdf, 5 páginas.
- RAMANIK, I.; LAU, RAYMOND Y.K.; AND CHOWDHURY, K. H., "Automatic Crime Detector: A Framework for Criminal Pattern Detection in Big Data Era" (2016). PACIS (Pacific Asia Conference on Information Systems) 2016 Proceedings, 10 páginas, https://aisel.aisnet.org/cgi/viewcontent.cgi?article=1266&context=pacis2016