Efecto de los antioxidantes post-entrenamiento y post-partido sobre el estrés oxidativo y la inflamación en jugadores profesionales de fútbol

  1. Molina López, Antonio
  2. Lara Padilla, Eleazar
  3. Moya Amaya, Heliodoro
  4. Rojano Ortega, Daniel
  5. Berral Aguilar, Antonio Jesús
  6. Estevan Navarro, Pedro
  7. Berral de la Rosa, Francisco José 1
  1. 1 Universidad Pablo de Olavide
    info

    Universidad Pablo de Olavide

    Sevilla, España

    ROR https://ror.org/02z749649

Revista:
Retos: nuevas tendencias en educación física, deporte y recreación

ISSN: 1579-1726 1988-2041

Año de publicación: 2022

Número: 43

Páginas: 996-1004

Tipo: Artículo

DOI: 10.47197/RETOS.V43I0.90276 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Retos: nuevas tendencias en educación física, deporte y recreación

Resumen

El objetivo de este estudio fue determinar si la inclusión de antioxidantes post-actividad es una estrategia útil para mejorar los parámetros analíticos específicos relacionados con el estrés oxidativo y la inflamación. El estudio se llevó a cabo en un equipo de fútbol de la Serie A italiana, entre octubre de 2019 y enero de 2020. En octubre, las mediciones se llevaron a cabo en los jugadores sin haber tomado la suplementación antioxidante post-actividad. El periodo de intervención correspondió desde finales de octubre hasta principios de enero, periodo en el que se suplementaron los antioxidantes post-actividad. Los resultados obtenidos confirmaron que los jugadores que tomaron antioxidantes durante el periodo de intervención en forma de una mezcla de un licuado de piña natural con un concentrado de cereza ácida, granada, grosella negra y remolacha en forma de stick, mejoraron significativamente los parámetros asociados al estrés oxidativo, aunque no se observó una mejora significativa en los parámetros relacionados con la inflamación. El uso de antioxidantes durante un periodo de setenta días es una estrategia de intervención post-actividad que puede considerarse eficaz para mejorar la reducción de los parámetros relacionados con el efecto oxidativo derivado de la práctica de ejercicio físico a nivel profesional en el fútbol, aunque se necesitan más estudios para determinar el efecto antiinflamatorio.

Referencias bibliográficas

  • Barnes, C., Archer, D. T., Hogg, B., Bush, M., & Bradley, P. S. (2014). The evolution of physical and technical performance parameters in the English Premier League. International journal of sports medicine, 35(13), 1095–1100.
  • Bell, P. G., Walshe, I. H., Davison, G. W., Stevenson, E., & Howatson, G. (2014). Montmorency cherries reduce the oxidative stress and inflammatory responses to repeated days high-intensity stochastic cycling. Nutrients, 6(2), 829–843.
  • Bolner A, Berizzi C, Benedetto S, Vano R, Bosello O & Nordera G (2019). Marked differences in redox status of professional soccer players depending on training types. American Journal of Research in Medical Sciences;6(1):8.
  • Bowtell, J., & Kelly, V. (2019). Fruit-Derived Polyphenol Supplementation for Athlete Recovery and Performance. Sports medicine (Auckland, N.Z.), 49(Suppl 1), 3–23.
  • Ceballos-Gurrola, O., Bernal-Reyes, F., Jardón-Rosas, M., Enríquez-Reyna, M., Durazo- Quiroz, J., & Ramírez-Siqueiros, M. (2020). Composición corporal y rendimiento físico de jugadores de fútbol soccer universitario por posición de juego (Body composition and physical performance of college soccer by player´s position). Retos, 39, 52-57.
  • Clarkson, P. M., & Hubal, M. J. (2002). Exercise-induced muscle damage in humans. American journal of physical medicine & rehabilitation, 81(11 Suppl), S52–S69.
  • Davinelli, S., Corbi, G., Righetti, S., Casiraghi, E., Chiappero, F., Martegani, S., … & Scapagnini, G. (2019). Relationship Between Distance Run Per Week, Omega-3 Index, and Arachidonic Acid (AA)/Eicosapentaenoic Acid (EPA) Ratio: An Observational Retrospective Study in Non-elite Runners. Frontiers in physiology, 10, 487.
  • de la Cruz Sánchez, E., Pino Ortega, J., Moreno Conteras, M. I., Cañadas Alonso, M., & Ruiz-Risueño Abab, J. (2015). Micronutrientes antioxidantes y actividad física: evidencias de las necesidades de ingesta a partir de las nuevas tecnologías de evaluación y estudio del estrés oxidativo en el deporte (Antioxidant micronutrients and physical activity: evidences of dietar. Retos, 13, 11-14.
  • Djordjevic, B., Baralic, I., Kotur-Stevuljevic, J., Stefanovic, A., Ivanisevic, J., Radivojevic, N., … & Dikic, N. (2012). Effect of astaxanthin supplementation on muscle damage and oxidative stress markers in elite young soccer players. The Journal of sports medicine and physical fitness, 52(4), 382–392.
  • Fernández-Lázaro, D., Fernandez-Lazaro, C. I., Mielgo-Ayuso, J., Navascués, L. J., Córdova Martínez, A., & Seco-Calvo, J. (2020). The Role of Selenium Mineral Trace Element in Exercise: Antioxidant Defense System, Muscle Performance, Hormone Response, and Athletic Performance. A Systematic Review. Nutrients, 12(6), 1790.
  • Fernández-Lázaro, D., Mielgo-Ayuso, J., Seco Calvo, J., Córdova Martínez, A., Caballero García, A., & Fernandez-Lazaro, C. I. (2020). Modulation of Exercise-Induced Muscle Damage, Inflammation, and Oxidative Markers by Curcumin Supplementation in a Physically Active Population: A Systematic Review. Nutrients, 12(2), 501.
  • Gissel, H., & Clausen, T. (2001). Excitation-induced Ca2+ influx and skeletal muscle cell damage. Acta physiologica Scandinavica, 171(3), 327–334.
  • Haida, Z., & Hakiman, M. (2019). A comprehensive review on the determination of enzymatic assay and nonenzymatic antioxidant activities. Food science & nutrition, 7(5), 1555–1563.
  • He, F., Li, J., Liu, Z., Chuang, C. C., Yang, W., & Zuo, L. (2016). Redox Mechanism of Reactive Oxygen Species in Exercise. Frontiers in physiology, 7, 486.
  • Issurin V. B. (2009). Generalized training effects induced by athletic preparation. A review. The Journal of sports medicine and physical fitness, 49(4), 333–345.
  • Jayedi, A., Rashidy-Pour, A., Parohan, M., Zargar, M. S., & Shab-Bidar, S. (2018). Dietary Antioxidants, Circulating Antioxidant Concentrations, Total Antioxidant Capacity, and Risk of All-Cause Mortality: A Systematic Review and Dose-Response Meta-Analysis of Prospective Observational Studies. Advances in nutrition (Bethesda, Md.), 9(6), 701–716.
  • Ji, L. L., Gomez-Cabrera, M. C., & Vina, J. (2006). Exercise and hormesis: activation of cellular antioxidant signaling pathway. Annals of the New York Academy of Sciences, 1067, 425–435.
  • Kojo S. (2004). Vitamin C: basic metabolism and its function as an index of oxidative stress. Current medicinal chemistry, 11(8), 1041–1064.
  • Kozakowska, M., Pietraszek-Gremplewicz, K., Jozkowicz, A., & Dulak, J. (2015). The role of oxidative stress in skeletal muscle injury and regeneration: focus on antioxidant enzymes. Journal of muscle research and cell motility, 36(6), 377–393.
  • Kruk, J., Aboul-Enein, H. Y., Kładna, A., & Bowser, J. E. (2019). Oxidative stress in biological systems and its relation with pathophysiological functions: the effect of physical activity on cellular redox homeostasis. Free radical research, 53(5), 497–521.
  • Lee S. R. (2018). Critical Role of Zinc as Either an Antioxidant or a Prooxidant in Cellular Systems. Oxidative medicine and cellular longevity, 2018, 9156285.
  • Margaritelis, N. V., Paschalis, V., Theodorou, A. A., Kyparos, A., & Nikolaidis, M. G. (2018). Antioxidants in Personalized Nutrition and Exercise. Advances in nutrition (Bethesda, Md.), 9(6), 813–823.
  • Merry, T. L., & Ristow, M. (2016). Do antioxidant supplements interfere with skeletal muscle adaptation to exercise training?. The Journal of physiology, 594(18), 5135–5147.
  • Morrison, D., Hughes, J., Della Gatta, P. A., Mason, S., Lamon, S., Russell, A. P., & Wadley, G. D. (2015). Vitamin C and E supplementation prevents some of the cellular adaptations to endurance-training in humans. Free radical biology & medicine, 89, 852–862.
  • Murphy, C. A., Cook, M. D., & Willems, M. (2017). Effect of New Zealand Blackcurrant Extract on Repeated Cycling Time Trial Performance. Sports (Basel, Switzerland), 5(2), 25.
  • Nelson, J. R., & Raskin, S. (2019). The eicosapentaenoic acid:arachidonic acid ratio and its clinical utility in cardiovascular disease. Postgraduate medicine, 131(4), 268–277.
  • Nogueira, A., Salguero del Valle, A., Molinero González, O., & Márquez Rosa, S. (2021). Evaluación del uso de métodos de recuperación entre los corredores populares españoles (Evaluation of the use of recovery methods amongst Spanish amateur runners). Retos, 41, 823-833.
  • Omi, N., Shiba, H., Nishimura, E., Tsukamoto, S., Maruki-Uchida, H., … & Morita, M. (2019). Effects of enzymatically modified isoquercitrin in supplementary protein powder on athlete body composition: a randomized, placebo-controlled, double-blind trial. Journal of the International Society of Sports Nutrition, 16(1), 39.
  • Palacios, G., Pedrero-Chamizo, R., Palacios, N., Maroto-Sánchez, B., Aznar, S., González-Gross, M. (2015). Biomarcadores de la actividad física y del deporte. Revista Española de Nutrición Comunitaria;21:235–42.
  • Paulsen, G., Cumming, K. T., Holden, G., Hallén, J., Rønnestad, B. R., Sveen, O., Skaug, A., Paur, I., Bastani, N. E., Østgaard, H. N., Buer, C., Midttun, M., Freuchen, F., Wiig, H., Ulseth, E. T., Garthe, I., Blomhoff, R., Benestad, H. B., & Raastad, T. (2014). Vitamin C and E supplementation hampers cellular adaptation to endurance training in humans: a double-blind, randomised, controlled trial. The Journal of physiology, 592(8), 1887–1901.
  • Perez, A. C., Cabral de Oliveira, A. C., Estevez, E., Molina, A. J., Prieto, J. G., & Alvarez, A. I. (2003). Mitochondrial, sarcoplasmic membrane integrity and protein degradation in heart and skeletal muscle in exercised rats. Comparative biochemistry and physiology. Toxicology & pharmacology : CBP, 134(2), 199–206.
  • Pingitore, A., Lima, G. P., Mastorci, F., Quinones, A., Iervasi, G., & Vassalle, C. (2015). Exercise and oxidative stress: potential effects of antioxidant dietary strategies in sports. Nutrition (Burbank, Los Angeles County, Calif.), 31(7-8), 916–922.
  • Powers, S. K., Ji, L. L., Kavazis, A. N., & Jackson, M. J. (2011). Reactive oxygen species: impact on skeletal muscle. Comprehensive Physiology, 1(2), 941–969.
  • Ramos-Campo, D. J., Ávila-Gandía, V., López-Román, F. J., Miñarro, J., Contreras, C., Soto-Méndez, F., Domingo Pedrol, J. C., & Luque-Rubia, A. J. (2020). Supplementation of Re-Esterified Docosahexaenoic and Eicosapentaenoic Acids Reduce Inflammatory and Muscle Damage Markers after Exercise in Endurance Athletes: A Randomized, Controlled Crossover Trial. Nutrients, 12(3), 719.
  • Raya-González, J., Suárez-Arrones, L., Rísquez Bretones, A., & Sáez de Villarreal, E. (2017). Efectos a corto plazo de un programa de entrenamiento de sobrecarga excéntrica sobre el rendimiento físico en jugadores de fútbol de élite U-16 (Short-term effects of an eccentric-overload training program on the physical performance on U-16 elite soccer. Retos, 33, 106-111.
  • Rojano-Ortega, D. R., Molina-López, A. M., Moya-Amaya, H. M., & Berral-de la Rosa, F. (2021). Tart cherry and pomegranate supplementations enhance recovery from exercise-induced muscle damage: a systematic review. Biology of sport, 38(1), 97–111.
  • Schneider, C. D., Bock, P. M., Becker, G. F., Moreira, J., Bello-Klein, A., & Oliveira, A. R. (2018). Comparison of the effects of two antioxidant diets on oxidative stress markers in triathletes. Biology of sport, 35(2), 181–189.
  • Siquier Coll, J., Muñoz Marín, D., Grijota Pérez, F. J., Bartolomé Sánchez, I., Robles Gil, M. C., Montero Arroyo, J., & Maynar Mariño, M. (2019). Influencia del entrenamiento en fútbol sobre parámetros de estrés oxidativo en eritrocitos [Influence of soccer training on parameters of oxidative stress in erythrocytes]. Nutricion hospitalaria, 36(4), 926–930.
  • Souglis, A., Bogdanis, G. C., Chryssanthopoulos, C., Apostolidis, N., & Geladas, N. D. (2018). Time Course of Oxidative Stress, Inflammation, and Muscle Damage Markers for 5 Days After a Soccer Match: Effects of Sex and Playing Position. Journal of strength and conditioning research, 32(7), 2045–2054.
  • Spanidis, Y., Stagos, D., Papanikolaou, C., Karatza, K., Theodosi, A., Veskoukis,… & Kouretas, D. (2018). Resistance-Trained Individuals Are Less Susceptible to Oxidative Damage after Eccentric Exercise. Oxidative medicine and cellular longevity, 2018, 6857190.
  • Takam, R.D., Moor, V., Nansseu, J.R., Pieme, C.A., Azabji, M., Moukette, B., … & Ngogang, J. (2016). Effects of chronic strenuous physical exercise on oxidative stress and antioxidant capacity in Sub-Saharan African professional soccer players. European Journal of Sports Medicine;3(1):15–26.
  • Trapp, D., Knez, W., & Sinclair, W. (2010). Could a vegetarian diet reduce exercise-induced oxidative stress? A review of the literature. Journal of sports sciences, 28(12), 1261–1268.
  • Thomas, K., Dent, J., Howatson, G., & Goodall, S. (2017). Etiology and Recovery of Neuromuscular Fatigue after Simulated Soccer Match Play. Medicine and science in sports and exercise, 49(5), 955–964.
  • Witz, K., Hinkle, D.E., Wiersma, W. & Jurs, S.G. (1990). Applied Statistics for the Behavioral Sciences. Journal of Educational Statistics;15(1):84.
  • World Medical Association (2013). World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA, 310(20), 2191–2194.
  • Yavari, A., Javadi, M., Mirmiran, P., & Bahadoran, Z. (2015). Exercise-induced oxidative stress and dietary antioxidants. Asian journal of sports medicine, 6(1), e24898.
  • Zhou, C., Gómez, M. Á., & Lorenzo, A. (2020). The evolution of physical and technical performance parameters in the Chinese Soccer Super League. Biology of sport, 37(2), 139–145.
  • Zimmermann MB. Vitamin and mineral supplementation and exercise performance. Schweiz Z Med Traumatol. 2003;51(1):53–7.