Aprendizaje profundo: una nueva vía para convertir el dato en conocimiento

  1. José Antonio Lagares 1
  2. Norberto Díaz Díaz 1
  3. Carlos D. Barranco González 1
  1. 1 Universidad Pablo de Olavide

    Universidad Pablo de Olavide

    Sevilla, España

    ROR https://ror.org/02z749649

Economía industrial

ISSN: 0422-2784

Year of publication: 2022

Issue Title: Economía del dato

Issue: 423

Pages: 25-38

Type: Article

More publications in: Economía industrial


Most of the traditional techniques within the field of Artificial Intelligence have a limited capacity in terms of the volume of data that can be processed, or their performance does not improve despite being able to count on voluminous data sets. Deep Learning is a new technique that, together with innovations in parallelization and Cloud Computing, overcomes these limitations. In this article, the most innovative current techniques within Deep Learning are collected, highlighting the capacity of this approach as an alternative to analyze, understand and convert data into knowledge

Bibliographic References

  • C.-W. Tsai, C.-F. L.-C. (2015). Big data analytics: a survey. Journal of Big Data, 1-32.
  • Calegari, R. C. (2020). On the integration of symbolic and sub-symbolic techniques for XAI: A survey. Intelligenza Artificiale. 14. 1-25. 10.3233/IA-190036.
  • CM, B. (2006). Pattern recognition and machine learning (information science and statistics). Springer.
  • Dastin, J. (2017). Obtenido de “Amazon scraps secret AI re- cruiting tool that showed bias against women”. Reuters. https:// www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-biasagainst-women-idUSKCN1MK08G
  • FV, V. (2016). The neural network zoo. Obtenido de https:// www.asimovinstitute.org/neural-network-zoo/
  • I. Goodfellow, Y. B. (2017). Deep learning. MIT Press. Jieyu Zhao, T. W.-W. (2017). Men Also Like Shopping: Reducing Gender Bias Amplification using Corpus-level Constraints. 2979-2989. 10.18653/v1/D17-1323.
  • Liermann, V. (2021). Overview Machine Learning and Deep Learning Frameworks. En The Digital Journey of Banking and Insurance, Volume III: Data Storage, Data Processing and Data Analysis (págs. 187-224). Springer International Publishing.
  • Mathias Kraus, S. F. (2020). Deep learning in business analytics and operations research: Models, applications and managerial implications. European Journal of Operational Research, 628- 641.
  • Mitchell, M. I. (2015). Machine learning: Trends, perspectives, and prospects. Science, 255-260.
  • Ng, A. (2016). Machine learning yearning: Technical strategy for AI Engineers, in the era of deep learning. Harvard Business Publishing.