CyEnGNet—App: A new Cytoscape app for the reconstruction of large co-expression networks using an ensemble approach

  1. Dulcenombre M., Saz-Navarro 2
  2. Aurelio López-Fernández 1
  3. Francisco A. Gómez-Vela 1
  4. Domingo S. Rodriguez-Baena 1
  1. 1 Universidad Pablo de Olavide
    info

    Universidad Pablo de Olavide

    Sevilla, España

    ROR https://ror.org/02z749649

  2. 2 Centro Andaluz de Biología del Desarrollo
    info

    Centro Andaluz de Biología del Desarrollo

    Sevilla, España

    ROR https://ror.org/01v5e3436

Journal:
SoftwareX

ISSN: 2352-7110

Year of publication: 2024

Volume: 25

Pages: 101634

Type: Article

DOI: 10.1016/J.SOFTX.2024.101634 GOOGLE SCHOLAR lock_openOpen access editor

More publications in: SoftwareX

Abstract

The construction of gene co-expression networks is an essential tool in Bioinformatics for discovering usefulbiological knowledge. There are a multitude of methodologies related to the construction of this type ofnetwork, and one of them is EnGNet, which carries out a joint and greedy approach to the reconstructionof large gene coexpression networks. This work introduces CyEnGNet-App, a Cytoscape application designedto integrate and leverage the EnGNet algorithm. The application allows dynamic interaction and visualisationof gene networks and integration with other Cytoscape applications. CyEnGNet-App is a valuable addition tothe field of Bioinformatics, improving the reconstruction of genetic networks and providing a more accessibleand efficient user experience in Cytoscape.

Bibliographic References

  • Brugere, (2018), ACM Comput Surv, 51, pp. 1, 10.1145/3154524
  • Lee, (2018), Anesthesiology, 129, pp. 1029, 10.1097/ALN.0000000000002228
  • Masalia, (2017), PLoS One, 12, 10.1371/journal.pone.0182289
  • Barbosa, (2018), Biosystems, 174, pp. 37, 10.1016/j.biosystems.2018.10.008
  • Gómez-Vela, (2016), Appl Soft Comput, 42, pp. 144, 10.1016/j.asoc.2016.01.014
  • Hecker, (2009), Biosystems, 96, pp. 86, 10.1016/j.biosystems.2008.12.004
  • Dougherty, (2007), Curr Genomics, 8, pp. 351, 10.2174/138920207783406505
  • Winterbach, (2013), BMC Syst Biol, 7, pp. 1, 10.1186/1752-0509-7-90
  • Vandereyken, (2018), Front Plant Sci, 9, pp. 694, 10.3389/fpls.2018.00694
  • Yip, (2007), BMC Bioinformatics, 8
  • Gómez-Vela, (2019), Entropy, 21, pp. 1139, 10.3390/e21121139
  • Butte AJ, Kohane IS. Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. In: Biocomputing 2000. p. 418–29. http://dx.doi.org/10.1142/9789814447331_0040.
  • de Siqueira Santos, (2014), Brief Bioinform, 15, pp. 906, 10.1093/bib/bbt051
  • Shannon, (2003), Genome Res, 13, pp. 2498, 10.1101/gr.1239303
  • Chin, (2014), BMC Syst Biol, 8, pp. S11, 10.1186/1752-0509-8-S4-S11
  • Utriainen, (2023), BMC Bioinformatics, 24, pp. 134, 10.1186/s12859-023-05225-z
  • Hodo, (2013), Clin Cancer Res, 19, pp. 1827, 10.1158/1078-0432.CCR-12-1641
  • Delgado-Chaves, (2020), Genes, 11, pp. 831, 10.3390/genes11070831
  • Wang, (2021), Pharmgenomics Pers Med, 14, pp. 767
  • Morris, (2011), BMC Bioinform., 12, pp. 1, 10.1186/1471-2105-12-436
  • Maere, (2005), Bioinformatics, 21, pp. 3448, 10.1093/bioinformatics/bti551
  • Delgado-Chaves, (2020), Genes, 11, pp. 831, 10.3390/genes11070831